Browse > Article

Effect of Thermophilic Bacteria on Degradation of Food Wastes  

Yi, Hwe-Su (Department of Microbiology, Kyungpook National University)
Jeong, Ji-Hyung (Agro-Biotechnology Education Center, NURI, Kyungpook National University)
Park, Yu-Mi (Department of Microbiology, Kyungpook National University)
Seul, Keyung-Jo (Department of Microbiology, Kyungpook National University)
Ghim, Sa-Youl (Department of Microbiology, Kyungpook National University)
Publication Information
Microbiology and Biotechnology Letters / v.34, no.4, 2006 , pp. 363-367 More about this Journal
Abstract
Food wastes were decomposed into the Mugri (Isung Engineering, Korea), a food waste reduction machine, with adding sawdust of cryptomeria. Degradation effects were better when the machine worked at over 45$^{\circ}C$ than those at the lower temperature. Thermophilic bacteria were isolated from cryptomeria sawdust and the food waste products degraded by the machine. The isolates from cryptomeria sawdust were classified into 3 genera (Acinetobacter baumannii, Enterobacter sp. and Erwinia cypripedii) and almost all the isolates from the degraded products were partially identified as Bacillus sp. by 16S rDNA sequence analysis. The isolated thermophilic bacteria showed degradative enzyme activities. In the case of addition of the 30 thermophilic bacteria into the machine, degradation rate of food wastes was almost twice as high with increasing process temperature up to 6$^{\circ}C$.
Keywords
Thermophile; food wastes; amylase; cellulase; protease; lipase;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Alya, S. K., H. Anissa, E. H. A. Nedra, G. F. Basma, K. Safia, and N. Moncef. 2006. Stability of thermostable alkaline protease from Bacillus licheniformis RP1 in commercial solid laundry detergent formulations. Microbiol. Res. 161: 1-8   DOI   ScienceOn
2 Lapygina, E. V., L. V. Lysak, and D. G. Zvyagintsev. 2002. Tolerance of soil bacterial complexes to salt shock. Microbiology 71: 143-147   DOI
3 Ugwuanyi, J. O., L. M. Harvey, and B. McNeil. 2005. Effect of digestion temperature and pH on treatment efficiency and evolution of volatile fatty acids during thermophilic aerobic digestion of model high strength agricultural waste. Bioresour. Technol. 96: 707-719   DOI   ScienceOn
4 Shin, H. S., and J. H. Youn. 2005. Conversion of food waste into hydrogen by thermophilic acidogenesis. Biodegradation 16: 33-44   DOI
5 Smith, R.E. 1977. Rapid tube test for detecting fungal cellulase production. Appl. Environ. Microbiol. 33: 980-981
6 Park, C. H., T. H. Kim, S. Y. Kim, J. W. Lee, and S. W. Kim. 2003. Bioremediation of 2,4,6-Trinitrotoluene contaminated soil in slurry and column reactors. J. Biosci. Bioeng. 96: 429-433
7 Kwon, S. H., J. A. Kwon, D. H. Lee, and T. D. Kim. 2001. The effect of pH readjustment on the treatment efficiency of food waste in fed-batch composting process. J. Kor. Solid Wastes Eng. Soc. 18: 218-227
8 Kwon, S. H., D. H. Lee, and T. D. Kim. 2001. Evaluation of food waste compostingprocess controlled the compost pH using the condensate properties. J. Kor. Solid Wastes Eng. Soc. 18: 372-380
9 Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428   DOI
10 Haruta, S., T. Nakayama, K. Nakamura, H. Hemmi, M. Ishii, Y. Igarashi, and T. Nishino. 2005. Microbial Diversity in Biodegradation and Reutilization Processes of Garbage. J. Biosci. Bioeng. 99: 1-11   DOI   ScienceOn
11 Yamada, Y. and Y. Kawase. 2006. Aerobic composting of waste activated sludge: Kinetic analysis for microbiological reaction and oxygen consumption. Waste Managemen. 26: 49-61   DOI   ScienceOn
12 Suh, M. G., S. B. Lee, K. E. Lee, and S. H. Lee. 2001. A study on reduction of food waste. Kor. J. Env. Hlth. Soc. 27: 14-19   과학기술학회마을
13 Vuong, C., F. Gotz, and M. Otto. 2000. Construction and Characterization of an agr Deletion Mutant of Staphylococcus epidermidis. Infect. Immun. 68: 1048-1053   DOI
14 Choi, E.-H., S.-E. Lee, K. S. Yoon, D.-K. Kwon, J.-K. Shon, S.-H. Park, M.-S. Han and S.-Y. Ghim. 2003. Isolation of nitrogen-fixing bacteria from gramineous crops and measurements of nitrogenase activity. Kor. J. Microbiol. Biotechnol. 31: 18-24
15 Kurosawa, K., T. Hosaka, N. Tamehiro, T. Inaoka, and K. Ochi. 2006. Improvement of ${\alpha}$ -amylase production by modulation of ribosomal component protein S12 in Bacillus subtilis 168. Appl. Environ. Microbiol. 72: 71-77   DOI   ScienceOn
16 Choi, W. S. and D. H. Bai. 2003. Isolation and production of amylase from soil microorganism. J. New Mater. Technol. 12: 6575
17 Alford, J. A., D. A. Pierce, and F. G. Suggs. 1964. Activity of microbial lipases on natural fats and synthetic triglycerides. J. Lipid Res. 5: 390-394
18 Yun, Y. S., J. I. Park, M. S. Suh, and J. M. Park. 2000. Treatment of food wastes using slurry-phase decomposition. Bioresour. Technol. 73: 21-27   DOI   ScienceOn
19 Min, S. G., J. H. Kim, T. W. Kim, and K. N. Kim. 2003. Isolation and Identification of protease producing bacteria in kimchi. Kor. J. Food Sci. Technol. 35: 666-670   과학기술학회마을
20 Gonzales, H. B., K. Takyu, H. Sakashita, Y. Nakano, W. Nishijima, and M. Okada. 2005. Biological solubilization and mineralization as novel approach for the pretreatment of food waste. Chemosphere 58: 57-63   DOI   ScienceOn