• 제목/요약/키워드: acidophiles

검색결과 5건 처리시간 0.018초

국내 폐광산 및 제주 곶자왈 지역내의 미생물 분리 및 특징 분석 (Isolation and characterization in the exhausted mine and Jeju Gotjawal)

  • 김예은;고현우;김소정;도경탁;박수제
    • 미생물학회지
    • /
    • 제53권4호
    • /
    • pp.309-315
    • /
    • 2017
  • 호산성미생물은 pH가 낮은 환경에서 살아가는 미생물로서 산화, 환원 반응을 통하여, 금속을 포함한 물질들의 순환에 영향을 미친다. 본 연구에서는, 국내의 폐광산 및 제주 곶자왈 지역의 산성토양으로부터 배양을 통해 50여 종 이상의 미생물을 분리하였으며, 분자계통학적 분석을 통하여 최종, Gammaproteobacteria 강에 속하는 미생물 6종, Actinobacteria 강에 속하는 미생물 5종, Betaproteobacteria 강에 속하는 미생물 4종, Alphaproteobacteria 강에 속하는 미생물 2종, Bacilli 강에 속하는 미생물 2종을 얻을 수 있었다. 이들은 공통적으로 낮은 pH의 조건에서 살아가는 미생물임을 확인 할 수 있었다. 본 연구를 통하여 확보한 산성토양내의 미생물들의 생리적 특징은 앞으로의 다양한 국내 미생물 자원의 활용에 기초적인 지식을 제공할 것으로 기대된다.

Extremozymes: A Potential Source for Industrial Applications

  • Dumorne, Kelly;Cordova, David Camacho;Astorga-Elo, Marcia;Renganathan, Prabhaharan
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권4호
    • /
    • pp.649-659
    • /
    • 2017
  • Extremophilic microorganisms have established a diversity of molecular strategies in order to survive in extreme conditions. Biocatalysts isolated by these organisms are termed extremozymes, and possess extraordinary properties of salt allowance, thermostability, and cold adaptivity. Extremozymes are very resistant to extreme conditions owing to their great solidity, and they pose new opportunities for biocatalysis and biotransformations, as well as for the development of the economy and new line of research, through their application. Thermophilic proteins, piezophilic proteins, acidophilic proteins, and halophilic proteins have been studied during the last few years. Amylases, proteases, lipases, pullulanases, cellulases, chitinases, xylanases, pectinases, isomerases, esterases, and dehydrogenases have great potential application for biotechnology, such as in agricultural, chemical, biomedical, and biotechnological processes. The study of extremozymes and their main applications have emerged during recent years.

Phylogenetic Diversity of Acidophilic Sporoactinobacteria Isolated from Various Soils

  • Cho, Sung-Heun;Han, Ji-Hye;Seong, Chi-Nam;Kim, Seung-Bum
    • Journal of Microbiology
    • /
    • 제44권6호
    • /
    • pp.600-606
    • /
    • 2006
  • Spore forming actinobacteria (sporoactinobacteria) isolated from soils with an acidic pH in Pinus thunbergii forests and coal mine waste were subjected to taxonomic characterization. For the isolation of acidophilic actinobacteria, acidified starch casein agar (pH adjusted to 4-5) was used. The numbers of actinobacteria growing in acidic media were between $3.2{\times}10^4$ and $8.0{\times}10^6$ CFU/g soil. Forty three acidophilic actinobacterial strains were isolated and their 16S rDNA sequences were determined. The isolates were divided into eight distinctive phylogenetic clusters within the variation encompassed by the family Streptomycetaceae. Four clusters among them were assigned to the genus Streptacidiphilus, whereas the remaining four were assigned to Streptomyces. The clusters belonging to either Streptomyces or Streptacidiphilus did not form a monophyletic clade. The growth pH profiles indicated that the representative isolates grew best between pH 5 and 6. It is evident from this study that acidity has played a critical role in the differentiation of the family Streptomycetaceae, and also that different mechanisms might have resulted in the evolution of two groups, Streptacidiphilus (strict acidophiles) and neutrotolerant acidophilic Streptomyces. The effect of geographic separation was clearly seen among the Streptacidiphilus isolates, which may be a key factor in speciation of the genus.

배양기법을 활용한 제주도내 내산 및 호염성 미생물의 분리 및 특성 분석 (Isolation and characterization of acid-resistanct and halophilic bacteria using cultivation technique in Jeju island)

  • 한빛;김민지;류다정;이기은;이병희;이은영;박수제
    • 미생물학회지
    • /
    • 제55권3호
    • /
    • pp.248-257
    • /
    • 2019
  • 본 연구에서는 제주 지역의 토양 및 해양 환경으로부터 약 70주의 미생물들을 분리하였으며, 16S ribosomal RNA 유전자 분석을 통하여 최종 21종의 미생물을 발굴하였다. 이들 미생물들은 5 강(Class) 16 속(Genus)에 속하며, 모두 국내 미기록종으로 확인되었다. 분리된 미생물의 기질 특이성 및 고분자 물질 분해능을 바탕으로 내산성과 호염성 미생물들의 생리활성 표현형은 서로 구별되는 것으로 관찰되었다. 본 연구결과는, 국내 미생물 자원활용에 기초적 정보를 제공할 것으로 기대된다.

Insights into Systems for Iron-Sulfur Cluster Biosynthesis in Acidophilic Microorganisms

  • Myriam, Perez;Braulio, Paillavil;Javiera, Rivera-Araya;Claudia, Munoz-Villagran;Omar, Orellana;Renato, Chavez;Gloria, Levican
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권9호
    • /
    • pp.1110-1119
    • /
    • 2022
  • Fe-S clusters are versatile and essential cofactors that participate in multiple and fundamental biological processes. In Escherichia coli, the biogenesis of these cofactors requires either the housekeeping Isc pathway, or the stress-induced Suf pathway which plays a general role under conditions of oxidative stress or iron limitation. In the present work, the Fe-S cluster assembly Isc and Suf systems of acidophilic Bacteria and Archaea, which thrive in highly oxidative environments, were studied. This analysis revealed that acidophilic microorganisms have a complete set of genes encoding for a single system (either Suf or Isc). In acidophilic Proteobacteria and Nitrospirae, a complete set of isc genes (iscRSUAX-hscBA-fdx), but not genes coding for the Suf system, was detected. The activity of the Isc system was studied in Leptospirillum sp. CF-1 (Nitrospirae). RT-PCR experiments showed that eight candidate genes were co-transcribed and conform the isc operon in this strain. Additionally, RT-qPCR assays showed that the expression of the iscS gene was significantly up-regulated in cells exposed to oxidative stress imposed by 260 mM Fe2(SO4)3 for 1 h or iron starvation for 3 h. The activity of cysteine desulfurase (IscS) in CF-1 cell extracts was also upregulated under such conditions. Thus, the Isc system from Leptospirillum sp. CF-1 seems to play an active role in stressful environments. These results contribute to a better understanding of the distribution and role of Fe-S cluster protein biogenesis systems in organisms that thrive in extreme environmental conditions.