Browse > Article
http://dx.doi.org/10.7845/kjm.2017.7010

Isolation and characterization in the exhausted mine and Jeju Gotjawal  

Kim, Ye-Eun (Department of Biology, Jeju National University)
Koh, Hyeon-Woo (Department of Biology, Jeju National University)
Kim, So-Jeong (Geologic Environment Research Division, Korea Institute of Geoscience and Mineral Resources)
Do, Kyoung-Tag (Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University)
Park, Soo-Je (Department of Biology, Jeju National University)
Publication Information
Korean Journal of Microbiology / v.53, no.4, 2017 , pp. 309-315 More about this Journal
Abstract
Most of acidophiles are found in the various low pH environments and affect to metal cycle through oxidation and reduction reactions. The present study was carried out above 50 strains as acidophiles isolated from acidic soils of exhausted mine and Jeju Gotjawal. Finally, total 19 strains obtained and were tentatively identified based on comparative similarity analysis for 16S rRNA gene sequence and physiological characterizations. These isolates belonged to Gammaproteobacteria (6 strains), Actinobacteria (5 strains), Betaproteobacteria (4 strains), Alphaproteobacteria (2 strains), and Bacilli (2 strains). We observed that these isolates can grow under low pH culture condition. This case study for analysis physiological characterizations of indigenous microorganisms in acidic soil might provide basic information on useful application.
Keywords
acido-tolerant bacteria; contaminant; soil;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Baker-Austin, C. and Dopson, M. 2007. Life in acid: pH homeostasis in acidophiles. Trends Microbiol. 15, 165-171.   DOI
2 Choi, H., Koh, H.W., Kim, H., Chae, J.C., and Park, S.J. 2016. Microbial community composition in the marine sediments of Jeju island: next-generation sequencing surveys. J. Microbiol. Biotechnol. 26, 883-890.   DOI
3 Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368-376.   DOI
4 Fitch, W.M. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Biol. 20, 406-416.   DOI
5 Gonzalez, J.M. and Saiz-Jimenez, C. 2002. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ. Microbiol. 4, 770-773.   DOI
6 Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95-98.
7 Hedrich, S., Schlomann, M., and Johnson, D.B. 2011. The ironoxidizing proteobacteria. Microbiology 157, 1551-1564.   DOI
8 Kim, O.S., Cho, Y.J., Lee, K., Yoon, S.H., Kim, M., Na, H., Park, S.C., Jeon, Y.S., Lee, J.H., Yi, H., et al. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62, 716-721.   DOI
9 Koh, H.W., Hong, H., Min, U.G., Kang, M.S., Kim, S.G., Na, J.G., Rhee, S.K., and Park, S.J. 2015a. Rhodanobacter aciditrophus sp. nov., an acidophilic bacterium isolated from mine wastewater. Int. J. Syst. Evol. Microbiol. 65, 4574-4579.   DOI
10 Koh, H.W., Kim, S.J., Rhee, S.K., and Park, S.J. 2015b. Isolation and characterization analysis of the halophilic archaea isolated from solar saltern, Gomso. Korean J. Microbiol. 51, 427-434.   DOI
11 Weisburg, W.G., Barns, S.M., Pelletier, D.A., and Lane, D.J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173, 697-703.   DOI
12 Liu, Y., Tang, H., Lin, Z., and Xu, P. 2015. Mechanisms of acid tolerance in bacteria and prospects in biotechnology and bioremediation. Biotechnol. Adv. 33, 1484-1492.   DOI
13 Muravyov, M.I. and Fomchenko, N.V. 2013. Leaching of nonferrous metals from copper converter slag with application of acidophilic microorganisms. Appl. Biochem. Microbiol. 49, 562-569.   DOI
14 Oren, A. 2010. Acidophiles. John Wiley & Sons, Inc., Online Publication.
15 Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725-2729.   DOI
16 Waksman, S.A. and Joffe, J.S. 1922. Microorganisms concerned in the oxidation of sulfur in the soil: II. Thiobacillus, Thiooxidans, a new sulfur-oxidizing organism isolated from the soil. J. Bacteriol. 7, 239-256.
17 Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.