• 제목/요약/키워드: acid tolerance

검색결과 568건 처리시간 0.04초

Characterization of Selected Lactobacillus Strains for Use as Probiotics

  • Song, Minyu;Yun, Bohyun;Moon, Jae-Hak;Park, Dong-June;Lim, Kwangsei;Oh, Sejong
    • 한국축산식품학회지
    • /
    • 제35권4호
    • /
    • pp.551-556
    • /
    • 2015
  • The aim of this study was to evaluate the functional properties of lactic acid bacteria from various sources and to identify strains for use as probiotics. Ten Lactobacillus strains were selected and their properties such as bile tolerance, acid resistance, cholesterol assimilation activity, and adherence to HT-29 cells were assessed to determine their potential as probiotics. Lactobacillus sp. JNU 8829, L. casei MB3, L. sakei MA9, L. sakei CH8, and L. acidophilus M23 were found to show full tolerance to the 0.3% bile acid. All strains without L. acidophilus M23 were the most acid-tolerant strains. After incubating the strains at pH 2.5 for 2 h, their viability decreased by 3 Log cells. Some strains survived at pH 2.5 in the presence of pepsin and 0.3% bile acid. Lactobacillus sp. JNU 8829, L. acidophilus KU41, L. acidophilus M23, L. fermentum NS2, L. plantarum M13, and L. plantarum NS3 were found to reduce cholesterol levels by >50% in vitro. In the adhesion assay, Lactobacillus sp. JNU 8829, L. casei MB3, L. sakei MA9, and L. sakei CH8 showed higher adhesion activities after 2 h of co-incubation with the intestinal cells. The results of this comprehensive analysis shows that this new probiotic strain named, Lactobacillus sp. JNU 8829 could be a promising candidate for dairy products.

후산 발효 적합 균주 선발 및 특성 (Properties of Lactic Acid Bacteria That Cause Decrease in Post-Fermentation to Apply Product)

  • 손지양;김세헌
    • Journal of Dairy Science and Biotechnology
    • /
    • 제31권1호
    • /
    • pp.51-58
    • /
    • 2013
  • Emerging studies suggest that vegetables or fruit juices deemed to be potential alternative base medium for lactic acid bacteria fermentation. Until now, limited studies have been carried out to evaluate such applications. Thus, the objective of present study is that lactic acid bacteria were evaluated for their viability at low pH, growth during storage at low temperature, and $CO_2$ formation. Furthermore, the effects of grapefruit extract with respect to cell viability, sensory ability, and organic acid production were evaluated for these strains. The probiotic properties of the strains, including acid tolerance, bile tolerance, and adhesion to human intestinal epithelial cells (HT-29 cells), prebiotic characteristics, and safety features were examined. All strains survived in MRS medium broth adjusted to pH 3.8, at $10^{\circ}C$ for 6 days, and did not produce $CO_2$ to check post fermentation. The medium of grapefruit extract fermentation by Lactobacillus plantarum CJIH 203 resulted in maximal viable counts, compared with other strains, and the extract subsequently tasted sour due to the presence of lactic acid. Lactobacillus plantarum CJIH203 was highly resistant to artificial gastric juice and intestinal juice, while Lactococcus lactis SJ09 strongly adhered to HT-29 cells. Tagatose showed the greatest ability to enhance the growth of L. plantarum SJ21, relative to the other strains. All strains were verified by safety tests such as hemolysis, gelatin hydration, and urea degradation. Therefore, these strains could be promising candidates for use in reducing excessive post-fermentation and functional products.

  • PDF

Development of Stress-tolerant Crop Plants

  • CHOI Hyung-in;KANG Jung-youn;SOHN Hee-kyung;KIM Soo-Young
    • 한국식물생명공학회:학술대회논문집
    • /
    • 한국식물생명공학회 2002년도 추계학술대회
    • /
    • pp.41-47
    • /
    • 2002
  • Adverse environmental conditions such as drought, high salt and cold/freezing are major factors that reduces crop productivity worldwide. According to a survey, $50-80\%$ of the maximum potential yield is lost by these 'environmental or abiotic stresses', which is approximately ten times higher than the loss by biotic stresses. Thus, Improving stress-tolerance of crop plants is an important way to improve agricultural productivity. In order to develop such stress-tolerant crop plants, we set out to identify key stress signaling components that can be used to develop commercially viable crop varieties with enhanced stress tolerance. Our primary focus so far has been on the identification of transcription factors that regulate stress responsive gene expression, especially those involved in ABA-mediated stress response. Be sessile, plants have the unique capability to adapt themselves to the abiotic stresses. This adaptive capability is largely dependent on the plant hormone abscisic acid (ABA), whose level increases under various stress conditions, triggering adaptive response. Central to the response is ABA-regulated gene expression, which ultimately leads to physiological changes at the whole plant level. Thus, once identified, it would be possible to enhance stress tolerance of crop plants by manipulating the expression of the factors that mediate ABA-dependent stress response. Here, we present our work on the isolation and functional characterization of the transcription factors.

  • PDF

Development of Stress-tolerant Crop Plants

  • Choi, Hyung-In;Kang, Jung-Youn;Sohn, Hee-Kyung;Kim, Soo-Young
    • 한국식물생명공학회:학술대회논문집
    • /
    • 한국식물생명공학회 2002년도 춘계학술대회
    • /
    • pp.41-47
    • /
    • 2002
  • Adverse environmental conditions such as drought, high salt and cold/freezing are major factors that reduces crop productivity worldwide. According to a survey, 50-80% of the maximum potential yield is lost by these 'environmental or abiotic stresses', which is approximately ten times higher than the loss by biotic stresses. Thus, improving stress-tolerance of crop plants is an important way to improve agricultural productivity. In order to develop such stress-tolerant crop plants, we set out to identify key stress signaling components that can be used to develop commercially viable crop varieties with enhanced stress tolerance. Our primary focus so far has been on the identification of transcription factors that regulate stress responsive gene expression, especially those involved in ABA-mediated stress response. Be sessile, plants have the unique capability to adapt themselves to the abiotic stresses. This adaptive capability is largely dependent on the plant hormone abscisic acid (ABA), whose level increases under various stress conditions, triggering adaptive response. Central to the response is ABA-regulated gene expression, which ultimately leads to physiological changes at the whole plant level. Thus, once identified, it would be possible to enhance stress tolerance of crop plants by manipulating the expression of the factors that mediate ABA-dependent stress response. Here, we present our work on the isolation and functional characterization of the transcription factors.

  • PDF

Transgenic Expression of MsHsp23 Confers Enhanced Tolerance to Abiotic Stresses in Tall Fescue

  • Lee, Ki-Won;Choi, Gi-Jun;Kim, Ki-Yong;Ji, Hee-Jung;Park, Hyung-Soo;Kim, Yong-Goo;Lee, Byung-Hyun;Lee, Sang-Hoon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권6호
    • /
    • pp.818-823
    • /
    • 2012
  • Tall fescue (Festuca arundinacea Schreb.) is an important cool season forage plant that is not well suited to extreme heat, salts, or heavy metals. To develop transgenic tall fescue plants with enhanced tolerance to abiotic stress, we introduced an alfalfa Hsp23 gene expression vector construct through Agrobacterium-mediated transformation. Integration and expression of the transgene were confirmed by polymerase chain reaction, northern blot, and western blot analyses. Under normal growth conditions, there was no significant difference in the growth of the transgenic plants and the non-transgenic controls. However, when exposed to various stresses such as salt or arsenic, transgenic plants showed a significantly lower accumulation of hydrogen peroxide and thiobarbituric acid reactive substances than control plants. The reduced accumulation of thiobarbituric acid reactive substances indicates that the transgenic plants possessed a more efficient reactive oxygen species-scavenging system. We speculate that the high levels of MsHsp23 proteins in the transgenic plants protect leaves from oxidative damage through chaperon and antioxidant activities. These results suggest that MsHsp23 confers abiotic stress tolerance in transgenic tall fescue and may be useful in developing stress tolerance in other crops.

국내 액상발효유에서 분리한 유산균의 동정 및 소화관액 내성조사 (Identification and Tolerance-Test to Digestive Fluids of Lactobacilli Isolated from Korean Liquid Yogurts)

  • 소명환
    • 한국식품과학회지
    • /
    • 제17권3호
    • /
    • pp.192-196
    • /
    • 1985
  • 국내 액상발효유 7개 회사 제품을 수거하여 미생물학적인 특성을 조사하였다. 7개 회사 제품(A, B, C, D, E, F 및 G)에서 분리한 8종의 유산균(a, b, b', c, d, e, f 및 g)을 동정해 본 결과 A회사 제품의 a균과 E회사 제품의 e균은 L. casei로 B회사 제품의 b균은 L. acidophilus로, B회사 제품의 b'균, C 회사 제품의 c균 및 G회사 제품의 g균은 L. jugurti로, F 회사 제품의 f균은 L. helveticus로, D회사 제품의 d균은 L. bulgaricus로 각각 동정되었다. L. helveticus로 동정된 f균과 L. jugurti로 동정된 c균은 인공위액에 대한 내성은 높았으나 담즙산에 대한 내성은 높지 못했다. L. acidophilus로 동정된 b균과 L. casei로 동정된 a균 및 e균은 인공위액과 담즙산에 대한 내성이 모두 높았고, L. bulgaricus로 동정된 d균과 L. jugurti 동정된 b'균 및 g균은 인공위액과 담즙산에 대한 내성이 모두 낮았다.

  • PDF

Bifidobacterium lactis를 이용한 기능성 김치의 특성 (Characterization of Functional Kimchi Using Bifidobacterium lactis)

  • 김태운;박애경;김금란;이정민;정대균;김해영
    • 한국식품과학회지
    • /
    • 제35권5호
    • /
    • pp.924-927
    • /
    • 2003
  • 비피더스 균주가 가지고 있는 여러 생리 활성을 나타내는 부가가치를 부여한 새로운 고기능성 심치 제품을 개발하기 위해 편성 혐기성 미생물인 비피더스균 가운데 산소에 내성이 있는 Bifidobacterium lactis를 선발하여 김치 제조에 적용하였다. 이 균주의 내산성과 내염성을 각각 알아본 결과 pH 30에서는 별다른 영향을 받지 않았으며 pH 2.5에서도 50% 이상의 생존율을 나타내었다. 그리고 NaCl 농도 3.5%에서도 사멸하지 않는 것으로 나타나 일반적인 김치의 pH와 염농도를 고려할 때 김치에 적용 가능한 것으로 판단되었다. 첨가된 Bifidobacterium lactis가 김치 내에서 생존함을 확인하기 위해서 PCR을 이용하여 확인한 결과 15일 이상 생존하고 있음을 확인할 수 있었다. 그리고 관능평가의 경우 Bifidobacterium lactis 첨가 김치가 전체적인 기호도에서 균주를 첨가하지 않은 대조군 김치와 유사한 특성을 나타냄으로써 Bifidobacterium lactis를 이용한 고기능성 김치의 제조가 가능할 것으로 판단되었다.

Induced Tolerance to Salinity Stress by Halotolerant Bacteria Bacillus aryabhattai H19-1 and B. mesonae H20-5 in Tomato Plants

  • Yoo, Sung-Je;Weon, Hang-Yeon;Song, Jaekyeong;Sang, Mee Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권7호
    • /
    • pp.1124-1136
    • /
    • 2019
  • Salinity is one of the major abiotic stresses that cause reduction of plant growth and crop productivity. It has been reported that plant growth-promoting bacteria (PGPB) could confer abiotic stress tolerance to plants. In a previous study, we screened bacterial strains capable of enhancing plant health under abiotic stresses and identified these strains based on 16s rRNA sequencing analysis. In this study, we investigated the effects of two selected strains, Bacillus aryabhattai H19-1 and B. mesonae H20-5, on responses of tomato plants against salinity stress. As a result, they alleviated decrease in plant growth and chlorophyll content; only strain H19-1 increased carotenoid content compared to that in untreated plants under salinity stress. Strains H19-1 and H20-5 significantly decreased electrolyte leakage, whereas they increased $Ca^{2+}$ content compared to that in the untreated control. Our results also indicated that H20-5-treated plants accumulated significantly higher levels of proline, abscisic acid (ABA), and antioxidant enzyme activities compared to untreated and H19-1-treated plants during salinity stress. Moreover, strain H20-5 upregulated 9-cisepoxycarotenoid dioxygenase 1 (NCED1) and abscisic acid-response element-binding proteins 1 (AREB1) genes, otherwise strain H19-1 downregulated AREB1 in tomato plants after the salinity challenge. These findings demonstrated that strains H19-1 and H20-5 induced ABA-independent and -dependent salinity tolerance, respectively, in tomato plants, therefore these strains can be used as effective bio-fertilizers for sustainable agriculture.

Biodegradation of trichloroacetic acid from organic solvent tolerant bacterium, Pseudomonas savastanoi BCNU 106

  • 김종수;박형철;조수동;이승한;김기욱;문자영;정영기;주우홍
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2003년도 생물공학의 동향(XII)
    • /
    • pp.390-392
    • /
    • 2003
  • Pseudomonas savastanoi BCNU 106은 mineral salt medium에서 30 mM trichloroacetic acid의 농도까지 유일한 탄소원으로 이용하여 생육할 수 있다는 것을 발견하였다. 또한 trichloroacetic acid 뿐만 아니라 monochloroacetic acid, trichloroethylene, p-dichlorobenzene을 유일한 탄소원으로 이용 가능하였다. 그러나 이들 화합물에 대한 내성시험결과 전혀 내성이 없는 것을 알게 되었다.

  • PDF

살리실산이 오이 잎의 산화적 스트레스와 UV-B 내성에 미치는 영향 (Effects of Salicylic Acid on Oxidative Stress and UV-B Tolerance in Cucumber Leaves)

  • 홍정희;김태윤
    • 한국환경과학회지
    • /
    • 제16권12호
    • /
    • pp.1345-1353
    • /
    • 2007
  • The effect of salicylic acid(SA) on antioxidant system and protective mechanisms against UV-B induced oxidative stress was investigated in cucumber(Cucumis sativus L.) leaves. UV-B radiation and SA were applied separately or in combination to first leaves of cucumber seedlings, and dry matter accumulation, lipid peroxidation and activities of antioxidant enzymes were measured in both dose and time-dependant manner. UV-B exposure showed reduced levels of fresh weight and dry matter production, whereas SA treatment significantly increased them. SA noticeably recovered the UV-B induced inhibition of biomass production. UV-B stress also affected lipid peroxidation and antioxidant enzyme defense system. Malondialdehyde(MDA), a product of lipid peroxidation, was greatly increased under UV-B stress, showing a significant enhancement of a secondary metabolites, which may have antioxidative properties in cucumber leaves exposed to UV-B radiation. Combined application of UV-B and SA caused a moderate increase in lipid peroxidation. These results suggest that SA may mediate protection against oxidative stress. UV-B exposure significantly increased SOD, APX, and GR activity compared with untreated control plants. Those plants treated with 1.0 mM SA showed a similar pattern of changes in activities of antioxidant enzymes. SA-mediated induction of antioxidant enzyme activity may involve a protective accumulation of $H_2O_2$ against UV-B stress. Moreover, their activities were stimulated with a greater increase by UV-B+SA treatment. The UV-B+SA plants always presented higher values than UV-B and SA plants, considering the adverse effects of UV-B on the antioxidant cell system. ABA and JA, second messengers in signaling in response to stresses, showed similar mode of action in UV-B stress, supporting that they may be important in acquired stress tolerance. Based on these results, it can be suggested that SA may participates in the induction of protective mechanisms involved in tolerance to UV-B induced oxidative stress.