• Title/Summary/Keyword: acid strength

Search Result 1,666, Processing Time 0.028 seconds

The Evaluation of the Field Applicability of the Soil Improving Method Using the Environment-friendly Organic Acid Material (친환경 유기산 재료를 활용한 지반개량 공법의 현장 적용성 평가)

  • Lee, Jong-Hwi;Hong, Jong-Ouk;Jin, Youngguo;Chun, Byung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.9
    • /
    • pp.85-95
    • /
    • 2012
  • The method of using organic acid is more environment-friendly for it improves the strength of the ground. The method of proliferating microbes makes soil particle bonded, finally improves the strength of the ground and decreasing permeability. Although there has been the research on the effect of strength increasing, there has never been a research on the evaluation of field application. In this paper, through the light drop weight test, the dynamic cone penetration test, the field density test, the variation of strength was investigated in the mixed ground with organic acid for 56 days. As the results of the field test, it was found that the strength and stiffness of the ground increased with organic acid, and that through SEM-EDS, the precipitation of calcium carbonate made by specified microbe obviously increased with organic acid material and so the ground was improved. Therefore, the sustainable development of this method needs to be analysed more in the future.

Experimental study on the Physical and Mechanical Properties and Acid-Resistance of Concrete with Oyster Shell (패분을 혼입한 콘크리트의 물리.역학적 특성 및 내산성에 관한 실험적 연구)

  • 서대석;민정기;정현정;남기성;성찬용
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.319-323
    • /
    • 1999
  • This study is performed to evaluate the physical and mechanical properties and acid-resistance of oyster shell concrete. The result shows that the unit weights of concrete with oyster shell are decreased by 1∼2% than that of the normla cement concrete. The highest strength is achieved by 2.5% oyster shell filled oyster shell concrete, it is increased compressive strength by 4% , tensile strength by 6% and bending strength by7% than that of the normal cement concrete, respectively . The acid-resistanceis increased with increase of the content of oyster shell. It is 1.6 times of the normal cement concrete by 15% oyster shell filled oyster shell concrete. Accordingly, oyster shell concrete will improve the properties of concrete.

  • PDF

The Acid-Resistance Properties of Hardened Alkali-Activated Slag Composites (황산의 침해를 받은 슬래그 경화체의 특성)

  • 김원기;소정섭;배동인
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.313-317
    • /
    • 2003
  • The study is the results of accelerated tests and the specimens, mortars, are submerged in a 5% sulfuric acid solution. The deterioration of specimens is followed up by investigating the change in weight and compressive strength of the specimens and techniques such as XRD and XRF are used to examine the chemical changes. Sulfuric acid is a very aggressive acid that reacts with the free lime [$Ca(OH)_2$] in the concrete forming gypsum($CaSO_{4}.2H_{2}O$). This reaction is associated with an increase in volume of the concrete, and the corroded surface becomes soft and white. The results showed that the OPC mortar caused an decrease in weight above 18% and strength loss about 57%. On the other hand, AASC(alkali-activated slag composites) did not cause any decrease in weight and in the case of strength caused an decrease below 10%. In addition, this mechanical results was verified to XRD and XRF.

  • PDF

Mechanical Properties of Plastic Waste/Cellulose Waste Composites (폐플라스틱/폐섬유소 복합체의 기계적 물성)

  • Hong, Young-Keun
    • Elastomers and Composites
    • /
    • v.38 no.1
    • /
    • pp.19-26
    • /
    • 2003
  • Mechanical properties of the commingled waste plastics filled with waste newspaper were studied. To improve adhesion at the interface, abietic acid was used. Tensile strength increased with fiber concentration. However the abietic acid did not have any influence on the strength. Tensile strain and impact strength as well decreased with increasing fiber level in the composite, but the abietic acid at low level of concentration with low level of fiber dramatically improved both properties. The reason seemed to be attributed to double-chemical nature of abietic acid.

Sulfuric Acid Resistance Evaluation of Repair Mortar Substituted Blast Furnace (고로슬래그를 치환한 보수 모르타르의 내 황산성 평가)

  • Kim, Wan-Su;Jang, Jong-Min;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.25-26
    • /
    • 2019
  • The Reinforced concrete structure is deteriorated in durability due to various deterioration factors such as acid, salt, etc., and thus requires repair and reinforcement. In this study, compressive strength and weight change were measured by substituting blast furnace slag with excellent chemical resistance. As a result, the decrease in compressive strength decreased in proportion to the blast furnace slag substitution rate, and in the case of BFS40, the strength increased after sulfuric acid immersion. The weight change also decreased in proportion to the replacement amount.

  • PDF

Effect of Hydrochloric Acid Concentration on Removal Efficiency and Chemical Forms of Heavy Metals During Dredged Sediment Acid Washing (준설토 산세척 시 염산 농도가 중금속의 정화효율 및 존재형태에 미치는 영향)

  • Kim, Kibeum;Choi, Yongju
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.1
    • /
    • pp.74-83
    • /
    • 2020
  • In this study, the effect of hydrochloric acid (HCl) concentrations on removal efficiency and chemical forms of heavy metals in dredged sediment during acid washing was investigated. The removal efficiencies of Zn, Cu, Pb, Ni and Cd by acid washing were 18.4-92.4%, 7.2-83.7%, 9.4-75%, 8.1-53.4% and 34.4-70.8%, respectively. Overall, the removal efficiencies of heavy metals were remarkably enhanced with the increase of the acid strength. However, the removal efficiencies for 0.5 and 1.0 M HCl were comparable, and both cases met the Korean soil contamination standard. Based on the sequential extraction results, concentration of the exchangeable fraction (F1), the most labile fraction, increased whereas concentrations of the other fractions decreased with increasing acid strength. Particularly, the carbonate (F2) and Fe/Mn oxides (F3) fractions drastically decreased by using 0.5 M or 1.0 M HCl. The current study results verified that acid washing could effectively reduce heavy metal concentrations and its potential mobility in dredged sediments. However, the study also found that acid washing may cause significant increase in bioavailable fraction of heavy metals, suggesting the need to evaluate the changes in chemical forms of heavy metals by acid washing when determining the acid strength to be applied.

SHEAR BOND STRENGTH OF REPAIRED COMPOSITE RESIN RESTORATIONS (수리된 복합레진 수복물의 전단결합강도 연구)

  • Choi, Soo-young;Jeong, Sun-Wa;Hwang, Yun-Chan;Kim, Sun-Ho;Yun, Chang;Oh, Won-Mann;Hwang, In-Nam
    • Restorative Dentistry and Endodontics
    • /
    • v.27 no.6
    • /
    • pp.569-576
    • /
    • 2002
  • This study was peformed to evaluate the interfacial shear bond strength of base (direct and indirect) and repair composites with aging and surface treatment methods. Direct composite resin specimens ($Charisma^{\circledR}$, Heraeus Kulzer, Germany) were aged for 5 min, 1 hour, 24 hours, and 1 week in $37^{\circ}C$ distilled water before surface treatment, and then divided into five groups Group 1, grinding; Group 2, grinding and application of bonding agent, Group 3, grinding, etching with 37% phosphoric acid for 30sec, and application of bonding agent, Group 4, grinding, etching with 37% phosphoric acid for 30sec, silane treatment, and application of bonding agent ; Group 5, grinding, etching with 4% hydrofluoric acid for 30sec. silane treatment, and application of bonding agent. Indirect composite resin specimens ($Artglass^{\circledR}$, Heraeus Kulzer, Germany) were aged for 1 week in $37^{\circ}C$ distilled water and divided into seven groups Group 1 - Group 5, equal to Charisma specimens; Group 6, grinding, etching with 37% phosphoric acid for 60sec, silane treatment, and application of bonding agent; Group7, grinding, etching with 4% hydrofluoric acid for 60 sec, silane treatment, and application of bond-ing agent. The repair material($Charisma^{\circledR}$) was then added on the center of the surface (5 mm in diameter. 5 mm in height). The shear bond strength was tested and the data was analyzed using one-way ANOVA and the Student- Newman-Keuls test. The following conclusions were drawn. 1 The shear bond strength of $Charisma^{\circledR}$ specimens aged for 1 hour was significantly higher in Group 2 and Group 5 than in Group 1 (p<0.05), and that of $Charisma^{\circledR}$ specimens aged for 1 week was signifi-cantly higher in Group 3 and Group 5 than in Group 1 (p<0.05). No significant difference was found in the bond strength of specimens aged for 5 min and 24 hours. 2. In Group 2 of the $Charisma^{\circledR}$ specimens, there was significant difference between the bond strength of 24 hours and that of 1 week (p<0.05). 3. In Group 4 of the $Charisma^{\circledR}$ specimens, the shear bond strength of specimens aged for 24 hours was significantly higher than the others(p<0.05) 4. There was no significant difference between the shear bond strength of the $Artglass^{\circledR}$ specimens, 5. Most of the $Charisma^{\circledR}$ specimens showed cohesive fractures. Artglass^{\circledR}$ specimens that were etched with acid (phosphoric or hydrofluoric) for 30 sec showed more cohesive fractures.

Properties of Cement Paste by the Addition of Liquefied Red Mud (중화 액상화 레드머드의 첨가량에 따른 시멘트 페이스트의 특성)

  • Lee, Hee-Ra;Kang, Hye-Ju;Lee, Yeong-Hun;Kang, Suk-Pyo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.23-24
    • /
    • 2019
  • In this paper, the compressive strength characteristics of cement paste were compared with the addition of liquefied red mud with the addition of nitric acid in order to improve the strength of the deteriorated cement. The results showed that the compressive strength with between 7 days and 28 days was greater than that of liquefied red mud. The ratio of daily compressive strength of the liquefied red mud is higher than that of the Plain with a 1 percent addition rate, and the ratio of compressive strength is lower than that of the Plain on the 28 days. Therefore, the compressive strength of neutralization liquefied red mud compared to liquidated red mud was relatively high, and the compressive strength of the red mud was shown to be improved to a level almost similar to that of Plain.

  • PDF

A STUDY ON THE SHEAR BOND STRENGTH OF LIGHT CURED GLASS IONOMER CEMENTS TO CONTAMINATED DENTIN (상아질 표면상태에 따른 광중합형 글래스아이오노머 시멘트의 전단결합강도에 관한 연구)

  • Kim, Kyoung-Hwa;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.22 no.2
    • /
    • pp.609-621
    • /
    • 1997
  • The purpose of this study was to evaluate the shear bond strength of three light-cured glass ionomer cements to blood contaminated bovine dentin. The materials used in this study were Fuji II LC, Dyract and Variglass VLC. The dentin conditioners were 10% polyacrylic acid, 10% maleic acid and 10% phosphoric acid. 180 lower anterior bovine teeth were selected in this study. The teeth were embedded in acrylic resin and were grounded with 320 to 600 grit silicon carbide paper to create a flat dentin surface. The teeth were divided into SIX groups. The experimental procedures in six groups were as follows; Group l(GF) : Samples bonded to dentin surface with Fuji II LC after 10% polyacrylic acid treatment. Group 2(BGF) : Samples bonded to dentin surface with Fuji II LC after 10% polyacrylic acid treatment and blood contamination. Group 3(MD) : Samples bonded to dentin surface with Dyract after 10% maleic acid treatment. Group 4(BMD) : Samples bonded to dentin surface with Dyract after 10% maleic acid treatment and blood contamination. Group 5(PV) : Samples bonded to dentin surface with Variglass VLC after 10% phosphoric acid treatment. Group 6(BPV) : Samples bonded-to dentin surface with Variglass VLC after 10% phosphoric acid treatment and blood contamination. Group 1,3 and 5 were classified into the control groups, while group 2,4 and 6 were classified into the experimental groups. Each group contained 30 samples. After 24 hours water storage at $37^{\circ}C$, all smples were subjected to a shear load to fracture at a cross head speed of 1.0 mm/min with Instron universal testing machine(No. 4467). Debonded surfaces were observed under Scanning Electron Microscope(Hitachi S-2300) at 20kvp. The data were evaluated statistically at the 95% confidence level with Student's t-test. The following results obtained; 1. Shear bond strengths were higher in the control groups(1,3,5 group) than in the experimental groups(2,4,6 group). 2. The shear bond strength of group 5(PV) was the highest in the control groups, and the group 5 was significantly higher than the group l(GF) on the shear bond strength. 3. The group 4(BMD) was the highest on the shear bond strength, and the group 2(BGF) was the lowest in the experimental groups. The group 4(BMD) and 6(BPV) showed a significant difference with the group 2 on the shear bond strength. 4. All the groups showed an adhesive-cohesive failure. except the group 2(BGF) showing adhesive failure.

  • PDF

Square CFST columns under cyclic load and acid rain attack: Experiments

  • Yuan, Fang;Chen, Mengcheng;Huang, Hong
    • Steel and Composite Structures
    • /
    • v.30 no.2
    • /
    • pp.171-183
    • /
    • 2019
  • As China's infrastructure continues to grow, concrete filled steel tubular (CFST) structures are attracting increasing interest for use in engineering applications in earthquake prone regions owing to their high section modulus, high strength, and good seismic performance. However, in a corrosive environment, the seismic resistance of the CFST columns may be affected to a certain extent. This study attempts to investigate the mechanical behaviours of square CFST members under both a cyclic load and an acid rain attack. First, the tensile mechanical properties of steel plates with various corrosion rates were tested. Second, a total of 12 columns with different corrosion rates were subjected to a reversed cyclic load and tested. Third, comparisons between the test results and the predicted ultimate strength by using four existing codes were carried out. It was found that the corrosion leads to an evident decrease in yield strength, elastic modulus, and tensile strain capacity of steel plates, and also to a noticeable deterioration in the ultimate strength, ductility, and energy dissipation of the CFST members. A larger axial force ratio leads to a more significant resulting deterioration of the seismic behaviour of the columns. In addition, the losses of both thickness and yield strength of an outer steel tube caused by corrosion should be taken into account when predicting the ultimate strength of corroded CFST columns.