• 제목/요약/키워드: acid salt

검색결과 1,662건 처리시간 0.023초

Characterization of the Aroma of Salt-fermented Anchovy Sauce Using Solid Phase Microextraction-Gas Chromatography-Olfactometry Based on Sample Dilution Analysis

  • Kim, Hyung-Joo;Baek, Hyung-Hee
    • Food Science and Biotechnology
    • /
    • 제14권2호
    • /
    • pp.238-241
    • /
    • 2005
  • Aroma-active compounds were evaluated from salt-fermented anchovy sauce by solid phase microextraction-gas chromatography-olfactometry (SPME-GC-O) based on sample dilution analysis (SDA). SPME extract from carboxen/polydimethylsiloxane (CAR/PDMS) fiber was the most similar to the original odor of salt-fermented anchovy sauce used for this experiment, followed by divinylbenzene/CAR/PDMS (DVB/CAR/PDMS) fiber. Because salt-fermented anchovy sauce contains 23% NaCl, NaCl concentration of diluent was considered when salt-fermented anchovy sauce was serially diluted. Linear relationship between GC response and sample concentration was observed when diluted with 23% NaCl solution, whereas not observed when diluted with deodorized distilled water. Eleven and 16 aroma-active compounds were detected by SPME-GC-O based on SDA using CAR/PDMS and DVB/CAR/PDMS fibers, respectively. Butanoic acid and 3-methyl butanoic acid showed the highest ${\log}_2SD$ factors for CAR/PDMS and DVB/CAR/PDMS fibers. Dimethyl trisulfide, methional, trimethyl amine, 1-penten-3-ol, and acetic acid were also detected as potent aroma-active compounds.

산란계 맹장 유산균의 특성에 관한 연구 (Study on Characteristics of Lactobacillus Isolated from Hen′s Cecum)

  • 김상호;박수영;유동조;이상진;나재천;최철환;이상진;류경선
    • 한국가금학회지
    • /
    • 제27권3호
    • /
    • pp.227-233
    • /
    • 2000
  • Preset study was carried out to evaluate characteristics of lactic acid producing bacteria(LAB) in hen's cecum as probiotics value. Distribution of LAB in intestinal tracts was investigated using 5∼25 weeks - old hens. So, 12 strains to LAB with different morphology were isolated purely. Acid tolerance of LAB tested at pH 1, 2, 3, and 4, and bile resistant also tested at 0, 0.3% and 0.5% bile salt concentration. Growth pattern of LAB observed to 60h. All strains of cecal LAB couldn't survive at pH 1, and decreased linearly survival colony after incubation at pH 2 although some strains could survive for 2h. Most of LAB maintained constant number at pH 3 and 4. The bacterial action could increase linearly at 0% bile salt concentration in all of tested strains. However, only one strain could multiply at 0.3% bile salt, others were influenced by bile salt. That tendency was similar at 0.5% bile salt. Growth was peaked at 12 to 18 h after innoculation. After peak, the decreasing pattern of colony was different to strains which some strains decreased rapidly or maintained for long time. The LAB of hen's cecum was similar to intolerance acidity, but different to resistant to bile salt and growth pattern by strain. So, we choose three strains which have probiocs value, and identified as Lactobacillus amylovorus LLA7, Lactobacillus crispatus LLA9 and Lactobacillus vaginalis LLA11.

  • PDF

Effect of Exogenous Proline on Metabolic Response of Tetragenococcus halophilus under Salt Stress

  • He, Guiqiang;Wu, Chongde;Huang, Jun;Zhou, Rongqing
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권9호
    • /
    • pp.1681-1691
    • /
    • 2017
  • This study investigated the effect of proline addition on the salt tolerance of Tetragenococcus halophilus. Salt stress led to the accumulation of intracellular proline in T. halophilus. When 0.5 g/l proline was added to hyperhaline medium, the biomass increased 34.6% (12% NaCl) and 27.7% (18% NaCl) compared with the control (without proline addition), respectively. A metabolomic approach was employed to reveal the cellular metabolic responses and protective mechanisms of proline upon salt stress. The results showed that both the cellular membrane fatty acid composition and metabolite profiling responded by increasing unsaturated and cyclopropane fatty acid proportions, as well as accumulating some specific intracellular metabolites (environmental stress protector). Higher contents of intermediates involved in glycolysis, the tricarboxylic acid cycle, and the pentose phosphate pathway were observed in the cells supplemented with proline. In addition, addition of proline resulted in increased concentrations of many organic osmolytes, including glutamate, alanine, citrulline, N-acetyl-tryptophan, and mannitol, which may be beneficial for osmotic homeostasis. Taken together, results in this study suggested that proline plays a protective role in improving the salt tolerance of T. halophilus by regulating the related metabolic pathways.

Toluene 용액 캐스팅에 의한 차출용 전도성 Polyaniline-HIPS 블렌드 제조 (Preparation of the Conducting Polyaniline-HIPS Blends for Injection Molding by Toluene Solution Casting)

  • 이종혁;김은옥
    • 폴리머
    • /
    • 제33권3호
    • /
    • pp.203-206
    • /
    • 2009
  • 화학적 산화중합에 의한 Polyaniline Emeraldine salt(PANI-salt)는 도펀트로 존재하는 HCl과 같은 양성 자산으로 인한 금속성 사출금형 부식이 발생한다. 본 연구에서는 비극성 유기용매인 톨루엔, 포펀트와 계면활성제 역할을 하는 dodecylbenzenesulfonic acid(DBSA)를 사용하여 유화 중합법으로 PANI-salt를 합성한 후, 공용매 toluene에서 PANI-salt와 high impact polystyrene(HIPS)를 다양한 비율로 solution-cast 혼합하여 PANI-HIPS 블렌드를 얻었다. PT-IR과 UV-Vis.로 PANI-salt 구조를 확인하였고, PANI-HIPS 블렌드의 모폴로지, 열적 및 전기적 특성을 확인하였다. PANI(50 mL)와 HIPS(1 g)을 혼합하여 사출온도 $103^{\circ}C$, 사출압력 120 psi 하에서 사출한 PANI-HIPS 사출품에서 가장 높은 전기전도도($6.02{\times}10^{-5}\;S/cm$)가 나타났다.

소금 첨가에 따른 도라지 발효 특성과 미생물 변화 및 항비만 효능 평가 (Effect of Platycodon grandiflorum Fermentation with Salt on Fermentation Characteristics, Microbial Change and Anti-obesity Activity)

  • 신나래;임수경;김호준
    • 한방비만학회지
    • /
    • 제18권2호
    • /
    • pp.64-73
    • /
    • 2018
  • Objectives: This study investigated the effect on microbial ecology, fermentation characteristics and anti-obesity of Platycodon grandiflorum (PG) fermentation with salt. Methods: PG was fermented for four weeks with 2.5% salt and the characteristics of fermented PG were performed by measuring pH, total sugar content, viable bacteria number and microbial profiling. Also, we measured total polyphenol, flavonoid and the percent of inhibition of lipase activity and lipid accumulation. Results: Salt added to PG for fermentation had an effect on pH, total sugar, total and the number of lactic acid bacteria. Total sugar and pH were reduced and number of total and lactic acid bacteria were increased after fermentation. The majority of bacteria for fermentation were Lactobacillus plantarum, Leuconostoc psedomesenteroides and Lactococcus lactis subspecies lactis regardless of salt addition. However, microbial compositions were altered by added salt and additional bacteria including Weissella koreensis, W. viridescens, Lactobacillus sakei and Lactobacillus cuvatus were found in fermented PG with salt. Total flavonoid was increased in fermented PG and lipid accumulation on HepG2 cells treated with fermented PG was reduced regardless of salt addition. Moreover, fermented PG without salt suppressed lipase activity. Conclusions: Addition of salt for PG fermentation had influence on fermentation characteristics including pH and sugar content as well as number of bacteria and microbial composition. In addition, fermented PG showed anti-obesity effect by increasing flavonoid content and inhibition of lipase activity and lipid accumulation.

오징어 먹즙 첨가에 따른 저염 오징어 젓갈의 비휘발성 유기산 변화 (The Changes of Non-Volatile Organic Acids in Low Salt Fermented Squid Affected by Adding to Squid Ink)

  • 오성천;조정순
    • 한국응용과학기술학회지
    • /
    • 제20권1호
    • /
    • pp.64-71
    • /
    • 2003
  • Squid ink was added to the low salt fermented squid by 4% of concentration and ripened at 10$^{\cric}C$ for 6 weeks and at 20$^{\cric}C$ for 28 days. The effect of the squid ink on the non-volatile organic acids of low salt fermented squid were investigated. The results are as follows; The non-volatile organic acid in the salt fermented squid without addition of the squid ink was examined and the result showed that lactic and acetic acids were the major organic acids even if very small amount of citric and oxalic acids were detected. In the squid ink added to the low salt fermented squid, total quantity of non-volatile organic acid in the latter part of the ripening was lower than no treatment groups.

소금 농도가 김치 발효에 미치는 영향 (The effect of salt concentration on Kimchi fermentation)

  • 박우포;김재욱
    • Applied Biological Chemistry
    • /
    • 제34권3호
    • /
    • pp.295-297
    • /
    • 1991
  • Effect of salt concentration of brined Chinese cabbage on the Kimchi fermentation was investigated. The salt concentration range was 1-5% and chemical characteristics of pH, acidity and ascorbic acid were measured during fermentation at $25^{\circ}C$. Fermentation rate was also calculated from the $CO_2$ production. It was found that the higher salt concentration caused a significant decrease in the maximum value of fermentation rate and pH reduction. Ascorbic acid content was rapidly decreased initially, followed by increase to maximum and slowely decreased thereafter. This change was more apparent at higher salt concentration.

  • PDF

발효주정 첨가 오만둥이(Styela plicata) 양념젓갈의 제조 및 품질 (Processing and Quality of Seasoned Low-salt Fermented Styela plicata Supplemented with Fermentation Alcohol)

  • 이현진;오광수
    • 한국수산과학회지
    • /
    • 제54권6호
    • /
    • pp.841-848
    • /
    • 2021
  • To develop a value-added low-salt fermented seafood with a long shelf-life, we prepared seasoned low-salt fermented Omandungi Styela plicata supplemented with fermentation alcohol (SOE). The SOE was produced by washing and dewatering shelled Omandungi, followed by cutting and salting for 24 h at 0±1℃. The salted Omandungi was seasoned and fermented with garlic, ginger, monosodium glutamate, red pepper, sesame, sorbitol, and sugar, for 7-8 days at 0±1℃. After adding 3-5% fermentation alcohol, the seasoned fermented Omandungi was packed in a polyester container. The salinity, volatile basic nitrogen content, and viable cell count of SOE were 4.8%, 22.1-22.2 mg/100 g, and (1.2-1.9)×103 CFU/g, respectively. Compared with the control, addition of 3-5% fermentation alcohol inhibited the decrease in freshness, texture degradation, and growth of residual bacteria. Additionally, the SOE showed good storage stability and organoleptic qualities when stored at 4±1℃ for 40 days. The total amino acid content of SOE was 2,186.0 mg/100 g, mainly comprising glutamic acid, aspartic acid, lysine, and phenylalanine. The free amino acid content was 189.0 mg/100 g, and mainly included taurine, glutamic acid, methionine, alanine, and proline.

A novel WD40 protein, BnSWD1, is involved in salt stress in Brassica napus

  • Lee, Sang-Hun;Lee, Jun-Hee;Paek, Kyung-Hee;Kwon, Suk-Yoon;Cho, Hye-Sun;Kim, Shin-Je;Park, Jeong-Mee
    • Plant Biotechnology Reports
    • /
    • 제4권2호
    • /
    • pp.165-172
    • /
    • 2010
  • Genes that are expressed early in specific response to high salinity conditions were isolated from rapeseed plant (Brassica napus L.) using an mRNA differential display method. Five PCR fragments (DD1.5) were isolated that were induced by, but showed different response kinetics to, 200 mM NaCl. Nucleotide sequence analysis and homology search revealed that the deduced amino sequences of three of the five cDNA fragments showed considerable similarity to those of ${\beta}$-mannosidase (DD1), tomato Pti-6 proteins (DD5), and the tobacco harpin-induced protein hin1 (DD4), respectively. In contrast, the remaining clones, DD3 and DD2, did not correspond to any substantial existing annotation. Using the DD3 fragment as a probe, we isolated a full-length cDNA clone from the cDNA library, which we termed BnSWD1 (Brassica napus salt responsive WD40 1). The predicted amino-acid sequence of BnSWD1 contains eight WD40 repeats and is conserved in all eukaryotes. Notably, the BnSWD1 gene is expressed at high levels under salt-stress conditions. Furthermore, we found that BnSWD1 was upregulated after treatment with abscisic acid, salicylic acid, and methyl jasmonate. Our study suggests that BnSWD1, which is a novel WD40 repeat-containing protein, has a function in salt-stress responses in plants, possibly via abscisic acid-dependent and/or -independent signaling pathways.

The Effect of Salt and pH on the Phase Transition Behaviors of pH and Temperature-Responsive Poly(N,N-diethylacrylamide-co-methylacrylic acid)

  • Liu, Tonghuan;Fang, Jian;Zhang, Yaping;Zeng, Zhengzhi
    • Macromolecular Research
    • /
    • 제16권8호
    • /
    • pp.670-675
    • /
    • 2008
  • A series of pH and temperature-responsive (N,N-diethylacrylamide-co-methylacrylic acid) copolymers were synthesized by radical copolymerization and characterized by elemental analysis, Fourier-transform infrared (FT-IR), nuclear magnetic resonance (NMR) $^1H$, $^{13}C$ and LLS. The effects of salt and pH on the phase transition behaviors of the copolymers were investigated by uv. With increasing NaCl concentration, significant salt effects on their phase transition behaviors were observed. UV spectroscopic studies showed that the phase transition became faster with increasing NaCl concentration. In addition, the phase transition behaviors of copolymers were sensitive to pH. The pH and temperature sensitivity of these copolymers would make an interesting drug delivery system.