• 제목/요약/키워드: acid resistance of concrete

검색결과 114건 처리시간 0.023초

탄닌산 부식 억제제를 사용한 콘크리트의 역학적 특성 및 부식저항성 (Mechanical Characteristics and Corrosion Resistance of Concrete Using Tannin Acid-Corrosion Inhibitor)

  • 양은익;류종현;염광수;황인동;김명유
    • 콘크리트학회논문집
    • /
    • 제20권6호
    • /
    • pp.741-746
    • /
    • 2008
  • RC 구조물에서 매립된 철근의 부식을 억제하기 위하여 많은 방법들이 소개되어 왔다. 철근의 부식을 억제하는 방법 중 하나가 부식억제제이다. 최근 탄닌산을 이용하여 활성태의 녹을 부동태의 녹으로 전환시킴으로써 부식의 진행을 지연시키는 기술이 개발되었다. 그러나 이 부식억제제가 일반적인 금속 제품에 대한 방식을 위하여 개발되었기 때문에 콘크리트구조물에 대한 성능이 검토되지 않았다. 따라서 본 연구에서는 탄닌산을 이용한 부식억제제의 적용성을 콘크리트 시험체에 대하여 조사하였다. 연구 결과에 따르면, 탄닌산 부식억제제는 콘크리트에 있어 시공성 및 압축강도의 저하를 발생시키지 않았다. 부식억제제가 시멘트 중량당 4% 이상 첨가될 경우, 염화물 침투깊이가 10% 정도 감소하였다. 또한, 탄닌산 부식억제제는 녹을 안정한 상태로 변환시키는 효과를 가지고 있어, 부식 저항성이 향상된다. 특히, 6% 이상의 첨가가 부식 저항성에 효과적인 것으로 나타났다.

다량의 광물질 혼화재를 사용한 고강도 콘크리트의 내구성 평가 (Durability Assessment of High Strength Concrete with High Volume Mineral Admixture)

  • 백철우;김훈상;최성우;조현태;류득현
    • 콘크리트학회논문집
    • /
    • 제27권6호
    • /
    • pp.641-649
    • /
    • 2015
  • 본 연구는 선행연구에서 도출한 다량의 광물질 혼화재를 사용한 고강도 콘크리트(HVMAC)의 내구성을 3성분계 콘크리트(TBC)와 시멘트만 사용한 콘크리트(NC)에 대해서 비교 평가하고자 하였다. 내구성 평가 종류는 염화물 침투 저항성, 동결융해 저항성, 두가지 전처리 조건으로 비교 평가한 탄산화 저항성, 5% 황산($H_2SO_4$), 10% 황산나트륨($Na_2SO_4$) 및 10% 황산마그네슘($MgSO_4$) 용액을 선정하여 황산 및 황산염 저항성 평가를 수행하였다. HVMAC는 모든 재령에서 우수한 염화물 침투 저항성을 나타내었고, 동결융해에 대한 내구성 지수가 100%에 가까운 우수한 결과를 나타내었다. 탄산화 저항성 평가 결과, HVMAC가 TBC보다 저감효과가 있었으며, 양생기간을 증가시켰을 때 콘크리트 내부조직을 치밀하게 만들어 탄산화 저항성을 향상시켰다. 황산 및 황산염 저항성 평가에서 HVMAC가 가장 우수한 것으로 나타났다. 다량의 혼화재 적용에 따른 수산화칼슘 생성량과 $C_3A$가 적어 황산 및 황산염에 의한 열화가 저감된 효과로 강도 감소 및 질량 변화가 작게 나타난 것으로 확인되었다.

Effect of Adding Scoria as Cement Replacement on Durability-Related Properties

  • al-Swaidani, Aref Mohamad;Aliyan, Samira Dib
    • International Journal of Concrete Structures and Materials
    • /
    • 제9권2호
    • /
    • pp.241-254
    • /
    • 2015
  • A lot of reinforced concrete (RC) structures in Syria went out of service after a few years of construction. This was mainly due to reinforcement corrosion or chemical attack on concrete. The use of blended cements is growing rapidly in the construction industry due to economical, ecological and technical benefits. Syria is relatively rich in scoria. In the study, mortar/concrete specimens were produced with seven types of cement: one plain Portland cement (control) and six blended cements with replacement levels ranging from 10 to 35 %. Rapid chloride penetration test was carried in accordance with ASTM C 1202 after two curing times of 28 and 90 days. The effect on the resistance of concrete against damage caused by corrosion of the embedded steel has been investigated using an accelerated corrosion test by impressing a constant anodic potential. The variation of current with time and time to failure of RC specimens were determined at 28 and 90 days curing. In addition, effects of aggressive acidic environments on mortars were investigated through 100 days of exposure to 5 % $H_2SO_4$, 10 % HCl, 5 % $HNO_3$ and 10 % $CH_3COOH$ solutions. Evaluation of sulfate resistance of mortars was also performed by immersing in 5 % $Na_2SO_4$ solution for 52 weeks. Test results reveal that the resistance to chloride penetration of concrete improves substantially with the increase of replacement level, and the concretes containing scoria based-blended cements, especially CEM II/B-P, exhibited corrosion initiation periods several times longer than the control mix. Further, an increase in scoria addition improves the acid resistance of mortar, especially in the early days of exposure, whereas after a long period of continuous exposure all specimens show the same behavior against the acid attack. According to results of sulfate resistance, CEM II/B-P can be used instead of SRPC in sulfate-bearing environments.

알칼리활성 플라이 애쉬 시멘트-콘크리트의 산저항성 및 내구성 (Acid Corrosion Resistance and Durability of Alkali-Activated Fly Ash Cement-Concrete)

  • 강화영;박상숙;한상호
    • 대한환경공학회지
    • /
    • 제30권1호
    • /
    • pp.61-68
    • /
    • 2008
  • 알칼리활성 플라이 애쉬 시멘트(AAFC)라 불리는 새로운 시멘트 물질을 이용하여 AAFC-콘크리트를 제조하였다. 알칼리활성 플라이 애쉬 시멘트를 사용하여 제조한 AAFC-콘크리트와 OPC-콘크리트에 대하여 산 침투, 염분, 탄산화, 동결 융해에 대한 영향과 SEM, XRD 분석을 수행하였다. 플라이 애쉬를 85$^{\circ}C$에서 24시간 동안 알칼리 활성화하여 제조한 AAFC-콘크리트(35 MPa)의 산 저항성은 OPC-콘크리트(35 MPa)보다 훨씬 뛰어난 것으로 나타났다. 또한 AAFC-콘크리트(35 MPa)는 염분용액, 탄산화 그리고 동결-융해와 같은 공격에 OPC-콘크리트(35 MPa)와 비슷한 저항성을 가지고 있는 것으로 나타났다.

Development of Ultra-Lightweight High Strength Trench Using Lightweight Polymer Concrete

  • Sung, Chan-Yong;Kim, Young-Ik
    • 한국농공학회지
    • /
    • 제45권7호
    • /
    • pp.20-26
    • /
    • 2003
  • The ultra-lightweight high strength polymer concrete could be used for the drain structures under severe condition. In this study, materials used were unsaturated polyester resin, heavy calcium carbonate, artificial lightweight coarse aggregate and perlite. In the test results, the unit weight of the ultra-lightweight high strength polymer concrete was 946 kg f/$\textrm{m}^3$ and the compressive strength was appeared in 34.5 MPa. The compressive strength, splitting tensile strength, flexural strength, acid resistance and weather resistance were shown in excellently than that of the normal cement concrete. The draining trench had 1m length, 0.24 m width, 0.02 m thickness and 0.07 m height. The developed trench could be effectively used at the draining structures.

Effect of Ground Granulated Blast Furnace Slag, Pulverized Fuel Ash, Silica Fume on Sulfuric Acid Corrosion Resistance of Cement Matrix

  • Jeon, Joong-Kyu;Moon, Han-Young;Ann, Ki-Yong;Kim, Hong-Sam;Kim, Yang-Bea
    • International Journal of Concrete Structures and Materials
    • /
    • 제18권2E호
    • /
    • pp.97-102
    • /
    • 2006
  • In this study, the effect of supplementary materials(GGBS, PFA, SF) on sulfuric acid corrosion resistance was assessed by measuring the compressive strength, corroded depth and weight change at 7, 28, 56, 91, 180 and 250 days of immersion in sulfuric acid solution with the pH of 0.5, 1.0, 2.0 and 3.0. Then, it was found that an increase in the duration of immersion and a decrease in the pH, as expected, resulted in a more severe corrosion irrespective of binders: increased corroded depth and weight change, and lowered the compressive strength. 60% GGBS mortar specimen was the most resistant to acid corrosion in terms of the corroded depth, weight change and compressive strength, due to the latent hydraulic characteristics and lower portion of calcium hydroxide. The order of resistance to acid was 60% GGBS>20% PFA>10% SF>OPC. In a microscopic examination, it was found that acid corrosion of cement matrix produced gypsum, as a result of decomposition of hydration products, which may loose the structure of cement matrix, thereby leading to a remarkable decrease of concrete properties.

Improvement of Strength and Chemical Resistance of Silicate Polymer Concrete

  • Figovsky, Oleg;Beilin, Dmitry
    • International Journal of Concrete Structures and Materials
    • /
    • 제3권2호
    • /
    • pp.97-101
    • /
    • 2009
  • It has been known that acid-resistant concretes on the liquid glass basis have high porosity (up to 18${\sim}$20%), low strength and insufficient water resistance. Therefore they can not be used as materials for load-bearing structural elements. Significant increasing of silicate matrix strength and density was carried out by incorporation of special liquid organic alkali-soluble silicate additives, which block of superficial pores and reduces concrete shrinkage deformation. It was demonstrated that introduction of tetrafurfuryloxisilane additive sharply increases strength, durability and shock resistance of silicate polymer concrete in aggressive media. This effect is attributable to hardening of contacts between silicate binder gel globes and modification of alkaline component owing to "inoculation" of the furan radical. The optimal concrete composition with the increased strength, chemical resistance in the aggressive environments, density and crack resistance was obtained.

Effectiveness of fibers and binders in high-strength concrete under chemical corrosion

  • Nematzadeh, Mahdi;Fallah-Valukolaee, Saber
    • Structural Engineering and Mechanics
    • /
    • 제64권2호
    • /
    • pp.243-257
    • /
    • 2017
  • Investigating the properties and durability of high-strength concrete exposed to sulfuric acid attack for the purpose of its application in structures exposed to this acid is of outmost importance. In this research, the resistance and durability of high-strength concrete containing macro-polymeric or steel fibers together with the pozzolans of silica fume or nano-silica against sulfuric acid attack are explored. To accomplish this goal, in total, 108 high-strength concrete specimens were made with 9 different mix designs containing macro-polymeric and steel fibers at the volume fractions of 0.5, 0.75, and 1.0%, as well as the pozzolans of silica fume and nano-silica with the replacement levels of 10 and 2%, respectively. After placing the specimens inside a 5% sulfuric acid solution in the periods of 7, 21, and 63 days of immersion, the effect of adding the fibers and pozzolans on the compressive properties, ultrasonic pulse velocity (UPV), and weight loss of high-strength concrete was investigated and the respective results were compared with those of the reference specimens. The obtained results suggest the dependency of the resistance and durability loss of high-strength concrete against sulfuric acid attack to the properties of fibers as well as their fraction in concrete volume. Moreover, compared with using nano-silica, using silica fume in the fibrous concrete mix leads to more durable specimens against sulfuric acid attack. Finally, an optimum solution for the design parameters where the crushing load of high-strength fibrous concrete is maximized was found using response surface method (RSM).

황산에 의한 모르타르의 침식현상 (The Corrosion Appearance of Mortar by The Sulfuric-Acid)

  • 이웅종;정연식;양승규;유재상;이종열
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.43-48
    • /
    • 2002
  • This study is experiment results that carried out the sulfuric acid immersion of the mortar containing blast furnace slag powder, based ell the mechanism of the sulfuric acid corrosion for concrete which was caused by the H$_2$S gas. The used materials is OPC, slag powder and gypsum, and the proportion of cement is total 13 levels which are 0~70% of the contents of slag, 0~6% of the contents of gypsum. The specimen is immersed by 5% H$_2$SO$_4$ solution after 28 days and its weight loss is measured at intervals of 7 days. The results of experiment showed that the substitution ratio of 70% slag was excellent at a point of view for the sulfuric acid resistance and the sulfuric acid resistance was not improved by tile increase of the blaine of slag(8, 000longrightarrow10, 000$\textrm{cm}^2$/g) and the addition of gypsum.

  • PDF

폐석 미분말을 혼입한 폴리머 시멘트 콘크리트의 내약품성에 관한 연구 (A Study for Chemical Resistance of Polymer Cement Concrete Using Tailing)

  • 전철수;연규석;이윤수;이필호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.355-360
    • /
    • 1999
  • Polymer cement is made by the modifying ordinary cement concrete with polymer additive. Until now polymer cement concrete is not used for the structural member, but it is growing to be considered as developing uses such as a waterproof of roof slab, the structural member for protecting corrosion, and a road pavement. The plymer cement concrete, being used for those uses, is superior to the cement concrete against the inorganic, organic acid, salt of acetic acid and organic solvents generally. In this paper, the polymer cement concrete was made by the ratio of 1:1 of sands and tailing in fine aggregate in order to solve the environmental pollution which causes the social problem by the tailing, It was measured for the compressive strength, flexural strength, and chemicals resistance was tested by dealing with 10% HCI, 20% NaOH and 10% NaCl aqueous solution.

  • PDF