• Title/Summary/Keyword: acid hydrolysate

Search Result 300, Processing Time 0.025 seconds

Production of Bio-ethanol from Red Algae by Acid Hydrolysis and Enzyme Treatment (산 및 효소 가수분해를 이용한 홍조류로부터 바이오 에탄올 생산)

  • Choi, Soo-Jeong;Lee, Sung-Mok;Lee, Jae-Hwa
    • Applied Chemistry for Engineering
    • /
    • v.23 no.3
    • /
    • pp.279-283
    • /
    • 2012
  • Bio-ethanol production research using various material has been problemed for solving problems of environment pollution caused by fossil fuels. Red-algae consists of agar, carrageenan, and porphyran. If it is treated by acid, it is able to change useful bio-mass for bio-ethanol. In this study, we found an optimal condition for bio-ethanol production from acid hydrolysate in red-algae. To produce bio-ethanol, Saccharomyces cerevisiae KCCM1129 inoculated to acid hydrolysate of Gelidium amansii. The optimal condition for Gelidium amansii hydrolysis was found to be 30 min reaction at $H_2SO_4$ concentration of 1.5% and $121^{\circ}C$. At this condition, its produced to 7.04 g/L galactose and 1.94 g/L glucose. And acetic acid concentration of 2.0% in agar produced 0.75 g/L galactose. In contrast, Pachymeniopis elliptica was treated with $H_2SO_4$concentration of 1.5%, it produced 6.38 g/L galactose. And Pachymeniopis elliptica treated with acetic acid concentration of 2% produced 0.368 g/L galactose. The optimal condition of ethanol production was found to be 96 h reaction at $H_2SO_4$concentration of 1.0% and $30^{\circ}C$, which produced 3.77 g/L ethanol.

Characteristics of Acid-hydrolysis and Ethanol Fermentation of Laminaria japonica (다시마의 산 가수분해와 에탄올 발효 특성)

  • Na, Choon-Ki;Song, Myoung-Ki
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.141-148
    • /
    • 2012
  • In order to study the utilization of brown seaweed Laminaria japonica as an alternative renewable feedstock for bioethanol production, the properties of acid hydrolysis and ethanol fermentation were investigated. The acid hydrolysis enhanced the final yield of fermentable sugars, which led great increase of ethanol productivity. The maximum yield of reducing sugars reached 135 mg/g-dry Laminaria japonica after 1.0N sulfuric acid-hydrolysis at $130^{\circ}C$ for 6 h. The Saccharomyces cerevisiae (ATCC 24858) could ferment $C_6$-sugars like glucose, galactose and mannose into ethanol, but not $C_5$-sugars like arabinose and xylose. Optimal fermentation time varied with sugars; 48 h for glucose, 72 h for galactose, and 96 h for mannose. Nevertheless, the ethanol yield from the hydrolysate reached 242 mg/g-dry Laminaria japonica after fermentation by the S. cerevisiae at $35^{\circ}C$ for 96 h, which corresponds to approximately 4 times more than the theoretical yield from total reducing sugars in the hydrolysates. It indicates that the non-reducing sugars or oligosaccharides dissolved in the hydrolysate played an important role in producing bioethanol. The ethanol concentration linearly increased from 2.4 to 9.2 g/L, while the ethanol yield per dry weight of biomass decreased from 242 to 185 mg/g, with increasing the ratio of biomass to acid solution from 1 to 5% (w/v). The bioethanol yield estimated was approximately 7,400~9,600 kg/ha/year, and indicated that Laminaria japonica is a promissing feedstock for bioethanol production.

Studies on the Improvements of Functional Properties of Sardine Protein by Plastein Reaction -2. General Properties of Plasteins- (Plastein반응을 이용한 정어리 단백질의 기능성 개선에 관한 연구 -2. Plastein의 일반적 성장-)

  • Kim, Se-Kwon;Kwak, Dong-Chae;Cho, Duck-Jae;Lee, Eung-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.17 no.3
    • /
    • pp.242-248
    • /
    • 1988
  • Plasteins were synthesized from a peptic sardine protein hydrolysate by pepsin, ${\alpha}-chymotrypsin$ pretense(from Aspergillus saitoi) and papain under the optimum conditions of previous paper. L -glutamic acid diethylester and L-leucine ethylester also were incorporated into plastein during the plastein reaction by papain. General composition, yield, molecular weight and amino acid composition were measured. The protein, ash and lipid rontent of plasteins were $81.1{\sim}88.2%$, $1.9{\sim}7.6%$ and $0.3{\sim}0.8%$, respectively. The yield of plasteins were pretense plastein 52.3%, papain plastein 44.2%, pepsin plnstein 43.6%, ${\alpha}-chymotrypsin$ plastein 43.2%. Leu -papain plastein 33. 2% and Glu - papain plastein 29.0%. The glutamic acid and leucine content in Glu -papain plastein and Leu -papain plastein were 39.0%, 37.5%, respectively. While the contents in the papain plastein were 14.3%, 7.1%, respectively. The amino acid composition of plasteins were similar to that of peptic sardine protein hydrolysate. The major molecular weight of the peptic hydrolysnte estimated by gelfilteration were 1,800 and 285, and those of plasteins were 26,000 and 9,100 for ${\alpha}-chymotrypsin$, 23,000, 10,000 and 4,300 for pepsin, 18,000 for pretense, 13,000 for papain, 29,000 for Leu -papain plastein and 19,000 for Glu -papain plastein.

  • PDF

Calcium-binding Peptides Derived from Tryptic Hydrolysates of Cheese Whey Protein

  • Kim, S.B.;Lim, J.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.10
    • /
    • pp.1459-1464
    • /
    • 2004
  • The purpose of this research was to investigate the potential use of cheese whey protein (CWP), a cheese by-product. The physiological activity of calcium-binding peptides in CWP may be used as a food additive that prevents bone disorders. This research also examined the characteristics of calcium-binding peptides. After the CWP was heat treated, it was hydrolyzed by trypsin. Then calcium-binding peptides were separated and purified by ion-exchange chromatography and reverse phase HPLC, respectively. To examine the characteristics of the purified calcium-binding peptides, amino acid composition and amino acid sequence were analyzed. Calcium-binding peptides with a small molecular weight of about 1.4 to 3.4 kDa were identified in the fraction that was flowed out from 0.25 M NaCl step gradient by ion-exchange chromatography of tryptic hydrolysates. The results of the amino acid analysis revealed that glutamic acid in a calcium-binding site took up most part of the amino acids including a quantity of proline, leucine and lysine. The amino acid sequence of calcium-binding peptides showed Phe-Leu-Asp-Asp-Asp-Leu-Thr-Asp and Ile-Leu-Asp-Lys from $\alpha$-LA and Ile-Pro-Ala-Val-Phe-Lys and Val-Tyr-Val-Glu-Glu-Leu-Lys from ${\beta}$-LG.

Nutritional Requirements of Prevotella sp. Isolated from the Rumen of the Goat

  • Shin, Hyung-Tai;Lee, Soo-Won;Park, Ki-Moon;Kim, Byung-Tae;Son, Jin-Hyuk;Lee, Jae-Heung
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.4
    • /
    • pp.313-317
    • /
    • 2004
  • The nutritional requirements for Prevotella sp. 4PCCNB2 isolated from the rumen of a native goat in Korea and those of the ATCC 19189 strain isolated from the bovine rumen were investigated. The two strains grew well with ammonium sulfate as the sole added nitrogen source. However, neither a complex of amino acids nor casein hydrolysate effectively replaced ammonium sulfate. Biotin, p-aminobenzoic acid, and vitamin $B_12$ were essential to culture the ATCC 19189 strain. Unlike the ATCC 19189 strain, however, $B_12$ was only stimulatory for the growth of the 4PCCNB2 strain. The 4PCCNB2 strain grew well in the basal medium without an individual acid such as acetic acid or valeric acid. In contrast, either acetic or valeric acid was absolutely required for the growth of the ATCC 19189 strain.

Recovery of Xylo-oligomer and Lignin Liquors from Rice Straw by Two 2-step Processes Using Aqueous Ammonia Followed by Hot-water or Sulfuric Acid

  • Vi Truong, Nguyen Phuong;Shrestha, Rubee koju;Kim, Tae Hyun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.682-689
    • /
    • 2015
  • A two-step process was investigated for pretreatment and fractionation of rice straw. The two-step fractionation process involves first, soaking rice straw in aqueous ammonia (SAA) in a batch reactor to recover lignin-rich hydrolysate. This is followed by a second-step treatment in a fixed-bed flow-through column reactor to recover xylo-oligomer-rich hydrolysate. The remaining glucan-rich solid cake is then subjected to an enzymatic process. In the first variant, SAA treatment in the first step dissolves lignin at moderate temperature (60 and $80^{\circ}C$), while in the second step, hot-water treatment is used for xylan removal at higher temperatures ($150{\sim}210^{\circ}C$). Under optimal conditions ($190^{\circ}C$ reaction temperature, 30 min reaction time, 5.0 ml/min flow rate, and 2.3 MPa reaction pressure), the SAA-hot-water fractionation removed 79.2% of the lignin and 63.4% of the xylan. In the second variant, SAA was followed by treatment with dilute sulfuric acid. With this process, optimal treatment conditions for effective fractionation of xylo-oligomer were found to be $80^{\circ}C$, 12 h reaction time, solid-to-liquid ratio of 1:12 in the first step; and 5.0 ml $H_2SO_4/min$, $170^{\circ}C$, and 2.3 MPa in the second step. After this two-step fractionation process, 85.4% lignin removal and 78.9% xylan removal (26.8% xylan recovery) were achieved. Use of the optimized second variant of the two-step fractionation process (SAA and $H_2SO_4$) resulted in enhanced enzymatic digestibility of the treated solid (99% glucan digestibility) with 15 FPU (filter paper unit) of CTec2 (cellulase)/g-glucan of enzyme loading, which was higher than 92% in the two-step fractionation process (SAA and hot-water).

Processings and Quality Characteristics of Flavoring Substance from the Short-neck Clam, Tapes philippinarum (바지락을 이용한 풍미소재의 가공 및 품질특성)

  • MOON Jeong-Ho;KIM Jong-Tae;KANG Su-Tae;HUR Jong-Hwa;OH Kwang-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.3
    • /
    • pp.210-219
    • /
    • 2003
  • To develop natural flavoring substances, optimal two stage enzyme hydrolysis conditions and flavor compounds of short-neck clam (Tapes philippinarum) enzyme hydrolysates were examined. The optimal enzyme hydrolysis conditions for two stage enzyme hydrolysate (TSEH) of short-neck clam were revealed in temperature at $55^{\circ}C$ for 4 hours digestion with alcalase at the 1st stage and 4 hours digestion at $45^{\circ}C$ with exopeptidase type neutrase at the 2nd stage. In quality tests of hot-water extracts, steam extracts and 4 kinds of enzyme hydrolysates, TSEH processing method was superior to other methods in yield, nitrogen contents, organoleptic taste such as umami intensity and inhibition of off-flavor formation, and transparency of extract. Total free amino acid contents in hot-water extract, steam extract and TSEH were 1,352.1 mg/100 g, 1,174.1 mg/100 g and 2,122.4 mg/100 g, respectively, Major free amino acids in TSEH were glutamic acid, glycine, alanine, tyrosine, phenylalanine and arginine. As for nucleotides and other bases, betaine, TMAO and creatinine were principal components in TSEH. The major inorganic ions in TSEH were Na, K, P and Cl. TSEH also revealed very higher angiotensin-I converting enzyme inhibition effect $(70.7\%)$ than those of hot-water and steam extract. We conclude that TSEH from short-neck clam was more flavorable compared with the seasoning materials on the market, it could be utilized as the instant soup base and the seasoning substances for fisheries processing.

Processing and Characteristics of Pearl Oyster (Pinctada fucata) Extracts (진주조개(Pinctada fucata) 추출물의 가공 및 품질특성)

  • Kang, Jeong-Goo;Kang, Su-Tae;Kang, Jin-Yeong;Nam, Gi-Ho;Lee, Sung-Man;Oh, Kwang-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.40 no.6
    • /
    • pp.343-349
    • /
    • 2007
  • This study examined the effective utilization of pearl processing by-products. Three extracts of hot-water extract (WE), hydro-cooked extract (HE), and two-step enzymatic hydrolysate (EH) were prepared from pearl oyster muscle, and their characteristics were examined. The moisture, crude protein, volatile basic nitrogen (VBN), and amino-N contents were 97.5-98.0%, 0.5-1.3%, 2.1-4.9 g/100 mL, and 35.0-74.5 g/100 mL, respectively. EH had the lowest VBN and highest amino-N contents. In addition, EH had the highest yields. In terms of its functional properties, EH inhibited angiotensin-I converting enzyme ($IC_{50}$, 1.39 mg/mL) more strongly than the other extracts ($IC_{50}$, 4.17-7.95 mg/mL). The free amino acid contents of WE, HE, and EH were 661, 470 and 1,150 mg/100 mL, respectively. Major amino acids were taurine and glutamic acid. Major inorganic ions were Na, Mg, and Ca. Contents of taste compounds, such as free amino acids, inorganic ions, and quaternary ammonium bases, differed significantly according to the extract methods. Based on the results of chemical experiments and sensory evaluation, the quality of EH was superior to the other extracts, and EH is suitable for use in natural flavoring materials.

Antioxidative Effects of Food Protein Hydrolysates by Protease (효소(酵素)에 의한 단백질(蛋白質) 가수분해물(加水分解物)의 항산화작용(抗酸化作用))

  • Kim, Seon-Bong;Yeum, Dong-Min;Yeo, Saeng-Gyu;Ji, Cheong-Il;Lee, Yong-Woo;Park, Yeung-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.492-497
    • /
    • 1989
  • The antioxidant effects against linoleic acid of various protein hydrolysates from fish protein, defatted soybean cake, egg albumin and casein were investigated. Each protein hydrolysate by enzyme hydrolysis exhibited the antioxidative effects by addition of 5mg and 10mg per 1g linoleic arid. Especially, egg albumin and fish protein hydrolysates had a great antioxidative effects. The protein hydrolysates indicated the synergitic effects with ${\alpha}-tocopherol$, and indicated scavenging effects toward metal ion $(Fe^{3+},\;Cu^{2+})$ as prooxidants.

  • PDF

Development of Natural Seasoning using Desalinated Tuna Boiled Extract (탈염된 참치 자숙액을 이용한 천연조미료 개발)

  • KIM Se-Kwon;BYUN Hee-Guk;JEON You-Jin;JOO Dong-Sik;KIM Jong-Bae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.1
    • /
    • pp.75-82
    • /
    • 1999
  • The hydrolysate of desalinated tuna boiled extract (TBE) were prepared by continuous hydrolysis of TBE using a membrane reactor. TBE and tuna boiled extract hydrolysate (TBEH) were isolated depending on molecular weights. The major molecular weight distributions of TBEH-l0K, TBEH-5K and TBEH-lK were 9,800Da, 3,000Da and 990Da, respectively. The amounts of nucleotides and their related compounds of TBE were 3.47 $\mu$mole/g AMP, 23.75 $\mu$mole/g IMP, 9.07 $\mu$mole/g inosine and 1.89 $\mu$mole/g hypoxanthine. Total content of amino acids having desirable taste (glycine, glutamic acid, alanine, proline, aspartic acid, serine) was about $63\%$ of total amino acid from TBE and about $62\%$ from TBEH. The natural seasoninings were prepared with TBE and TBEH. From the results of sensory evaluations, complex seasoning containing TBEH-1K was almost equal to the shellfish complex seasoning obtained from the market. The mixed sauce which was made by mixing of $50\%$ TBEH sauce and $50\%$ fermented soy sauce was similar to the tradition soybean sauce in product quality and it showed the possibility to be used for the substitute product for acid hydrolyzed soysauce.

  • PDF