• Title/Summary/Keyword: acid environment

Search Result 2,542, Processing Time 0.026 seconds

Remediation of Soil Surrounding Abandoned Metal Mine By Using Low Molecular Weight Organic Acid (저분자 유기산을 이용한 폐금속광산 주변토양 정화)

  • 이동호;박옥현
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1998.11a
    • /
    • pp.183-188
    • /
    • 1998
  • The efficiency of removing cadmium, copper, and lead from a contaminated soil of abandoned metal mine was studied in a laboratory investigation where citric acid were used to extract the metal from the soil. The contamination level of Pb, Cu in the soil A were 875.5, 667.5mg/kg respectively. The mobility and bioavailability of the metals in soil were also estimated by Sequential Chemical Extractions. Citric acid were examined for its potential extractive capabilities. Concentrations of the acid examined in this study ranged from 0.025 to 0.15M. The pH of the suspensions and S/S ratio in which the extractions were performed ranged from 2.4 to 8.1, and from 2.1:1 to 20:1. Results showed that the removal of contaminant using citric acid was pH and S/S raton dependent.

  • PDF

자연환경 변화와 광물의 역할

  • 김수진
    • Proceedings of the Petrological Society of Korea Conference
    • /
    • 2000.05a
    • /
    • pp.3-11
    • /
    • 2000
  • The earth environment consists of four spheres : geosphere, hydrosphere, atmosphere and biosphere. The geosphere consists mostly of minerals. It, however, contains some water and air in its shallow depth. Although hydrosphere and atmosphere consist predominantly of water and air, respectively, both contain some minerals. The biosphere consisting of various organisms is present in the interfaces of geosphere, hydrosphere and atmosphere. The natural environment of the earth is continuously changing by the interaction of four spheres. It suggests that out relevant environmental problems can not be revolved without understanding the natural relationship of these four spheres. Minerals in our environment are very important because they are the main constituent materials of the earth and they control our environment. The roles of minerals in our environment have not been understood even in the scientific society. Thus their roles have been neglected. Review of studies on the environmental mineralogy so far made at our laboratory and others show that minerals control the environment in various ways. Minerals neutralize the acid water as well as acid rain. Minerals in soils and rocks are major neutralizer of the acid rain. Salinization of sea water is attributed to the ionic substitution between minerals and sea water. Some minerals control the humidity of the air. Corals, the products of biomineralization, are the main carbon controller of the air. Minerals also adsorb heavy metals, organic pollutants and radioactive nuclides. Such remarkable functions for controlling the environment come from the mineral-water reaction and biomineralization. All these phenomena are subjects of the environmental mineralogy, a new field of earth science.

  • PDF

Melamine testing of meat, eggs and diary products sold in Incheon

  • Ra, Do-Kyung;Hong, Seong-Hee;Lee, Jeong-Gu;Lee, Sung-Mo
    • Korean Journal of Veterinary Service
    • /
    • v.32 no.4
    • /
    • pp.381-383
    • /
    • 2009
  • From Oct. 2008 to Oct. 2009, 619 livestock products sold in Incheon were examined for melamine contamination. HPLC was used to detect the melamine concentration from various products. $C_{18}$ column $(3.9\times150mm,\;4{\mu}m)$ was applied with a phase composed of 10mM citric acid and 10mM sodium octane sulfonate : acetonitrile (in ratio 90:10) pumped isocratically at 1.0ml/min. Melamine was not detected from any of the products at the level of LOD 0.03mg/kg and LOQ 0.08mg/kg, suggesting that no melamine contamination was ascertained in livestock products in Incheon area. However, further tests should be done to detect other melamine analogues for the evaluation of toxicity and safety of melamine and cyanuric acid in the future.

A study of corrosion of welded bridge steel SWS400 in the acid-rain environment (산성비 분위기에서 교량용 강재 SWS400의 용접부 부식에 관한 연구)

  • 정원석;김정구;이병훈
    • Journal of Welding and Joining
    • /
    • v.15 no.5
    • /
    • pp.124-133
    • /
    • 1997
  • Corrosion behavior of welded SWS400 steel used for bridges was studied in a range of the acid-rain environment using immersion, potentiodynamic polartization, polarization resistance, and galvanic corrosion tests. The SWS400 steel exhibited active corrosion behavior in the range of acid-rain environment, i.e. no passivation. As the results of immersion corrosion test, Tafel extrapolation method, and polarization resistance measurement, the average corrosion rats of the steels were 0.31-0.72 mm/year in the pH of 4-5, and 0.17 mm/yera in the pH 6, respectively. The steel showed a resistance to corrosion in the pH 6. The observed active behavior of SWS400 steel in chloride-containing environment indicated that the chloride ions exerts a detrimental influence on the formation of passive films. Galvanic corrosion was observed between the weld and the base metals because the weld is anodic to the base metal.

  • PDF

The Current Status of Strong Acids Production, Consumption, and Spill Cases in Korea (사고 누출 화학물질 중 강산의 생산, 사용 현황 및 사고 사례 분석)

  • Shin, Doyun;Moon, Hee Sun;Yoon, Yoon Yeol;Yun, Uk;Lee, Yunho;Ha, Kyoochul;Hyun, Sung Pil
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.6
    • /
    • pp.6-12
    • /
    • 2014
  • We reviewed literature focusing on the amounts of domestic production, distribution, and consumption of strong acids and their spill cases. In particular, we investigated the chemistry and toxicity of four strong acids classified as "accident preparedness substances," including hydrochloric, nitric, sulfuric, and hydrofluoric acid. We recommend sulfuric and hydrofluoric acid as the chemicals of priority control based on the amounts used and toxicity. An advanced prevention/response system needs to be established along with an improved human and social infrastructure to prevent and efficiently respond to chemical accidents. Understanding the behavior and transport of spilled strong acids in the soil and groundwater environments requires a multi-disciplinary approach since they go through a variety of chemical and biogeochemical reactions with complex geomedia. However, no such research has been done in this area in Korea to the best of our knowledge. We expect the results of this study to contribute as basic data to future research.

Prediction of Temporal Variation of Son Concentrations in Rainwater (산성비 모델을 이용한 시간별 강우성분 예측)

  • 김순태;홍민선;문수호;최종인
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.2
    • /
    • pp.191-204
    • /
    • 2003
  • A one dimensional time dependent acid rain model considering size distribution of aerosols and hydrometeors is developed to predict observed chemical and physical properties of precipitation. Temporal variations of anions and cations observed are predicted fairly well with acid rain model simulations. It is found that aerosol depletion rates are highly dependent on aerosol sizes under the assumption of Marshall - Palmer raindrop size distribution. Also, the aerosol depletion during the initial rain event largely influences on ion concentrations in rainwaters.

The Hydrodesulfurization over NiPtMo Catalysts and Acidic Characterization of Supports (NiPtMo계 촉매 담체의 산특성 및 수소첨가 탈황반응)

  • 김문찬;이원묵;김경림
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.10 no.4
    • /
    • pp.281-288
    • /
    • 1994
  • The hydrodesulfurization (DBT) were Peformed over NiPtMo catalysts supported on HZSM-5, LaY and ${\gamma}$- $Al_2$O$_3$under high H$_2$ pressure. And the acidities of these catalysts were characterized by using TGA and DSC. The result showed that the order of the acid strength for prepared supports was HZSM -5>LaY>${\gamma}$- A1$_2$O$_3$. For the acid amount we obtained the same result for the acid strength The acid strength and the acid amount mainly depended on the kinds of supports whose acid site were strong or not The activity of the hydrodesulfurization decreased for catalysts which had strong acid sites. The origin of acid site was Bronsted in NH50 and NY catalysts And it was Lewis in NA catalyst The order of desorption activation energy for Pyridine was NH50>NY>NA. And the result was the same for thiophene. The activity of the hydrodesulfurization decreased for catalysts which had strong acid sites. The conversion of DBT over NA catalyst was higher than NH and NY catalysts.

  • PDF

Effects of Acid Rain Treatment on Height Growth of Several Landscape Tree Species, pH Value and $Al^{3+}$ Concentration in Soil: Comparison after 5 Years [I] (人工酸性雨 處理가 5年後 몇 가지 造景樹種의 樹高生長, 土壤 酸度와 可溶性 알루미늄의 濃度에 미치는 影響 [I])

  • 정용문;우수영;김판기
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.4
    • /
    • pp.249-256
    • /
    • 1997
  • To identify the long-term influence of acid rain treatment on tree growth, acid rain of various composition (pH 2.0, pH 4.0 and pH 5.6 as control) was applied to several landscape trees for five months (April through August, 1991). Tree height, pH values and $Al^{3+}$ concentration in soil were investigated. Acid rain treatments seemed to promote height growth in the first year (1991), but have become an inhibiting factor over five years. All of coniferous species and most broad-leaved species, except Acer ginnala, showed opposite trends in height responses to acid rain treatments between the first (1991) and last (1996) year. In contrast, Acer ginnala showed similar trends to acid rain treatments in the height growth between 1991 and 1996. This result suggested that Acer ginnala has a characteristic adapability to acid rain stress. pH values of surface soil were lower than those of 30 cm soil depth. This fact suggested that acid rain treatments made surface soil acidic condition. In addition, physiological characteristics (photosynthesis, stomatal condition and biomass) have to be investigated to identify the relationship between long-term effects of $AL^{3+}$ concentration and growth.

  • PDF

Antimicrobial Effect of Lactic acid and Hydrogen Peroxide and Distribution of Vibrio parahaemolyticus from the Incheon Adjacent Sea (인천연안 Vibrio parahaemolyticus의 분포 및 유산과 과산화수소 처리에 의한 항균효과)

  • Jang, Jae-Seon;Cho, Woo-Kyoun;Lee, Hye-Jeong;Lee, Jea-Mann;Kim, Hye-Young;Kim, Yong-Hee
    • Journal of environmental and Sanitary engineering
    • /
    • v.21 no.4 s.62
    • /
    • pp.11-18
    • /
    • 2006
  • This study was carried out to investigate the distribution of Vibrio parahaemolyticus in the Incheon adjacent sea, and antimicrobial effect on growth of Vibrio parahaemolyticus in lactic acid and hydrogen peroxide and combination of lactic acid and hydrogen peroxide. The detected strains were compared geographical, months and sample types. The distribution of Vibrio parahaemolyticus was high at Ganghwa county with 66.1%(336 samples), on 7-9 months with 72.4%(386 samples) and from tireland with 75.0%(90 samples), respectively. The minimun inhibitory concentration (MIC) of lactic acid in Vibrio parahaemolyticus were 1250 ppm at pH 6.5 and 7.0, 625 ppm at pH 6.0. respectively. The minimun inhibitory concentration (MIC) of hydrogen peroxide in Vibrio parahaemolyticus were 25 ppm at pH 6.5 and 7.0, 12.5 ppm at pH 6.0, respectively. MICs of combined treatment of lactic acid and hydrogen peroxide in Vibrio parahaemolyticus were 625 ppm of lactic acid with 12.5 ppm of hydrogen peroxide. The correlations between MICs of lactic acid and hydrogen peroxide in Vibrio parahaemolyticus were obtained through the coefficient of determination($R^2$). $R^2$ value were 1.0000. The antimicrobial effect of lactic acid and hydrogen peroxide in Vibrio parahaemolyticus could be confirmed from the result of this experiment.