• Title/Summary/Keyword: acid and alkali treatment

Search Result 157, Processing Time 0.023 seconds

Quantification of Karanjin, Tannin and Trypsin Inhibitors in Raw and Detoxified Expeller and Solvent Extracted Karanj (Pongamia glabra) Cake

  • Panda, A.K.;Sastry, V.R.B.;Kumar, A.;Saha, S.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.12
    • /
    • pp.1776-1783
    • /
    • 2006
  • Despite being a rich source of protein (28-34%), karanj (Pongamia glabra) cake is found to be bitter in taste and toxic in nature owing to the presence of flavonoid (karanjin), tannin and trypsin inhibitor, thereby restricting its safe inclusion in poultry rations. Feeding of karanj cake at higher levels (>10%) adversely affected the growth performance of poultry due to the presence of these toxic factors. Therefore, efforts were made to detoxify karanj cake by various physico-chemical methods such as dry heat, water washing, pressure cooking, alkali and acid treatments and microbiological treatment with Sacchraromyces cerevisiae (strain S-49). The level of residual karanjin in raw and variously processed cake was quantified by high performance liquid chromatography and tannin and trypsin inhibitor was quantified by titrametric and colorimetric methods, respectively. The karanjin, tannin and trypsin inhibitor levels in such solvent and expeller pressed karanj cake were 0.132, 3.766 and 6.550 and 0.324, 3.172 and 8.513%, respectively. Pressure-cooking of solvent extracted karanj cake (SKC) substantially reduced the karanjin content at a cake:water ratio of 1:0.5 with 30-minute cooking. Among chemical methods, 1.5% (w/w) NaOH was very effective in reducing the karanjin content. $Ca(OH)_2$ treatment was also equally effective in karanjin reduction, but at a higher concentration of 3.0% (w/w). A similar trend was noticed with respect to treatment of expeller pressed karanj cake (EKC). Pressure cooking of EKC was effective in reducing the karanjin level of the cake. Among chemical methods alkali treatment [2% (w/w) NaOH] substantially reduced the karanjin levels of the cake. Other methods such as water washing, dry heat, HCl, glacial acetic acid, urea-ammoniation, combined acid and alkali, and microbiological treatments marginally reduced the karanjin concentration of SKC and EKC. Treatment of both SKC and EKC with 1.5% and 2.0% NaOH (w/w) was the most effective method in reducing the tannin content. Among the various methods of detoxification, dry heat, pressure cooking and microbiological treatment with Saccharomyces cerevisiae were substantially effective in reducing the trypsin inhibitor activity in both SKC and EKC. Based on reduction in karanjin, in addition to tannin and trypsin inhibitor activity, detoxification of SKC with either 1.5% NaOH or 3% $Ca(OH)_2$, w/w) and with 2% NaOH were more effective. Despite the effectiveness of pressure cooking in reducing the karanjin content, it could not be recommended for detoxification because of the practical difficulties in adopting the technology as well as for economic considerations.

Cause of Surface voids in Concrete Attached to an Aluminum Form, and Measures for Prevention

  • Noh, Sang-Kyun;Lee, Seung-Hoon;Han, Cheon-Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.5
    • /
    • pp.457-464
    • /
    • 2013
  • Traditionally, the material used for the form in reinforced concrete construction has been wood or steel. But recently, aluminum forms have been widely used in wall structures such as apartment buildings. Aluminum is light, easy to handle, and economically advantageous, but the hydrogen gas created due to its reaction with the alkali component in concrete gives rise to air pockets on the concrete's surface, and deteriorates the surface's finishability. In this research, to determine the influence of aluminum material on concrete, the cement paste W/C and its chemical reactivity in alkali and acid solution were analyzed. As a prevention plan, the influence of the number of applications of calcium hydroxide and various surface coating materials was analyzed. Through the analysis, it was found that the surface voids on the aluminum form are the result of the reaction of hydrogen gas with an alkali such as $Ca(OH)_2$. This can be prevented by the surface treatment of $Ca(OH)_2$, separating material and coating material. However, poor surface form and damages to the form are expected to cause quality degradation because of the aluminum-concrete interaction. Therefore, thorough surface treatment, rather than the type of separating material or coating material, is considered the most important target of management.

Studies on the Pollution-Free Pulping by Nitric Acid - Nitric Acid Pulping of Alkali-Pretreated Wood - (질산(窒酸)을 이용한 무공해(無公害)펄프 제조(製造)에 관한 연구(硏究) - 알카리 전처리재(前處理材)의 질산(窒酸)펄프화에 관하여 -)

  • Cho, Nam Seok
    • Journal of Korean Society of Forest Science
    • /
    • v.61 no.1
    • /
    • pp.27-36
    • /
    • 1983
  • This study was performed to get the basic information on nitric acid pulping of beech wood. In order to reduce the consumption of nitric acid, alkali pretreated woods were applied to a nitric acid pulping process. It consisted of nitric acid treatment to a high residual lignin content and the subsequent delignification with alkali, required far less chemical than the single stage method. At the first stage of nitric pulping, pulp yield descreased with increasing cooking time and 3 percent of nitric acid was more effective on the delignification of wood than 1 or 2 percent. Alkali pretreatment of wood improved significantly the rate of delignification, and 79 percent of the pretreated yield was good enough for excellent delignification. The dissolution of carbohydrate (mainly xylose) was increased with increasing cooking time, especially at the second stage. It would be considered that carbonyl groups introduced to polysaccharides in wood by nitric acid oxidation caused the degradation of carbohydrates.

  • PDF

Comparison of Different Alkali Treatment of Bagasse and Rice Straw

  • Suksombat, W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.10
    • /
    • pp.1430-1433
    • /
    • 2004
  • A study was conducted to determine the effect of different alkali treatments on changes in chemical composition and on degradability of bagasse and rice straw. This study divided into 2 experiments, the first with bagasse and the second with rice straw. Each experiment comprised 9 treatments which included: untreated control; 3% NaOH; 6% NaOH; 3% urea; 6% urea; 3% NaOH/3% urea; 3% NaOH/6% urea; 6% NaOH/3% urea; 6% NaOH/6% urea. In both experiments, crude protein contents were increased from 2.0 to 12.5 units for bagasse and 3.1 to 13.7 units for rice straw by urea treatments. Ash contents of the treated bagasse and rice straw were increased over the untreated control (1.5-9.7 units for bagasse; 4.2-8.8 units for rice straw). The effects on ether extract, crude fiber, neutral detergent fiber and acid detergent fiber of the treated bagasse and rice straw were variable. Nylon bag degradability of dry matter and crude fiber were increased by treatments applying NaOH and NaOH plus urea but not urea alone. In contrast, the egradability of neutral detergent fiber and acid detergent fiber were reduced compared with the untreated control. From these degradability studies, it can be concluded that the most efficient treatments of bagasse were those treatments with 6% NaOH, followed by treatments with 6% NaOH plus 3% or 6% urea and 3% NaOH plus 3% or 6% urea, respectively. However, when comparison was made on the cost of chemical used to treat the agricultural by-products, particularly in case of rice straw, 3-6% urea would be appropriate.

Biological response of primary rat calvarial cell by surface treatment of Ti-8Ta-8Nb alloy (Ti-8Ta-3Nb 합금의 표면처리에 의한 백서 두개관 세포의 반응)

  • Kim, Hae-Jin;Son, Mee-Kyoung;Park, Ji-Il;Chung, Hyun-Ju;Kim, Young-Joon
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.4
    • /
    • pp.595-602
    • /
    • 2008
  • Purpose: Ti-6Al-4V alloy is widely used as an implant material because of its good biocompatibility and good mechanical property compared with commercial pure titanium. Otherwise, toxicity of aluminum and vanadium in vivo has been reported. Ti-8Ta-3Nb alloy is recently developed in the R&D Center for Ti and Special Alloys and it was reported that this alloy has high mechanical strength, no cytotoxicity and similar biocompatibility to commercial pure titanium, but many studies are needed for its clinical use. In these experiment, we carried out different surface treatment on each Ti-8Ta-3Nb alloy disks, then cultured cell on it and assessed biological response. Materials and Methods: cpTi, Ti-6Al-4V, Ti-8Ta-3Nb alloy disks were prepared and carried out sandblasting and acid etching (SLA) or alkali-heat treatment (AH) on the Ti-8Ta-3Nb alloy disks. We cultured primary rat calvarial cells on each surface and assessed early cell attachment and proliferation by scanning electron microscopy, cell proliferation, alkaline phosphatase activity. Result: The rates of cell proliferation on the cpTi, Ti-8Ta-3Nb AH disks were higher than others (p<0.05) and alkaline phosphatase activity was significantly enhanced on the Ti-STa-8Nb AH disks(p<0.05). Conclusion: Most favorable cell response was shown on the Ti-8Ta-3Nb AH surfaces. It is supposed that alkali-heat treatment of the Ti-8Ta-3Nb alloy could be induced earlier bone healing and osseointegration than smooth surface.

Biochemicl Caracterization of Entomocidal Parasporal Crystals of Bacillus thuringiensis Strains (Bacillus thuringiensis 결정성독소의 생화학적 특성)

  • Lee, Yeong-Geun;Gang, Seok-Gwon;Kim, Sang-Hyeon
    • Journal of Sericultural and Entomological Science
    • /
    • v.31 no.1
    • /
    • pp.37-44
    • /
    • 1989
  • The parasporal crystals of Bacillus thuringinsis subspecies kurstaki, dendrolimus, finitimus, aizawai and israelensis were compared by polyacrylamide electrophoresis, amino acid composition and immunological analysis. In the subspecies of kurstaki, dendrolimus, finitimus and aizawai, the molecular weights of main subusnits of crystal solubilized by alkaline solution were 1.3${\times}$105 and 6.5${\times}$104 while those of subsp. israelensis were 4${\times}$104 and 1,4${\times}$104. The degradation of lepidopteran toxic subspecies crystals by silkworm midgut protease showed 6.0-6.4${\times}$104 molecular weight and the pattern of degradation of subsp. israelensis crystals was similar to that of alkaline solution treatment. In the amino acid composition, aspartic acid in subsp. israelensis and glutiamic acid in the other four subspecies were the most abundant. The immunological characteristics of the crystals revealed that the antibody produced against the alkali-solubilized crystal protein of subsp. israelensis reacted with only its antigen, but the crystal antigens from the other four lepidopteran toxic subspecies did cross-react with each other as well as with their own homologous antisera.

  • PDF

The Investigation on Color Change of Dis-azo Acid Dye in Wool Dyeing (양모섬유의 염색시 디스아조계 산성염료의 변색현상 규명)

  • 김미경;김태경;윤석한;임용진
    • Textile Coloration and Finishing
    • /
    • v.15 no.2
    • /
    • pp.86-92
    • /
    • 2003
  • It is already known that the color of wool fabric dyed with disazo acid dyes could be changed in dyeing process and this is accelerated under alkaline condition. Focus was given to figuring out the mechanism of this color change, through the LC-MS analysis. In this study, no color change was seen in wool fabrics dyed with C. I. Acid Blue 113 under weak acidic, neutral and weak alkaline conditions for 1hour. However, the wool fabrics dyed under weak alkaline condition for a long time over 3 hours fumed reddish orange. When the wool fabrics dyed under weak acidic, neutral and weak alkaline conditions were treated with $0.5g/L\;Na_2C0_3$ solution, all of them turned reddish orange. On the other hand, the color of silk fabrics dyed with C. I. Acid Blue 113 were not changed after the same alkaline treatment. Wool contains cystine and cysteine, whereas silk does not. Due to the reversible reduction/oxidation process of cystine and cysteine in wool dyeing, the C. I. Acid Blue 113 of the dis-azo type is decomposed by reduction and consequently turned them into the reddish orange mono-azo types dye.

Use of Exo-polygalacturonase to Improve Extraction Yields of Alginic Acid from Sea Mustard (Undaria pinnatifida)

  • Lee, Seung-Cheol;Oh, Jeong-Hoon;Hwang, Yong-Il;Kim, Jeong-Mok
    • Preventive Nutrition and Food Science
    • /
    • v.7 no.3
    • /
    • pp.317-319
    • /
    • 2002
  • Exo-polygalacturonase (EPG) from Rhizopus sp. was applied to the extraction of alginic acid from sea mustard to increase extraction yield. EPG digestion was examined under distinct conditions within temperatures from $25^{\circ}C$ to 5$0^{\circ}C$, pH 5 to 9, and treatment times from 0 to 36 hr. The optimal conditions fur alginic acid extraction with EPG were: pH 7.0 at 3$0^{\circ}C$ for 24 hrs. The EPG hot water extraction yield was 3.4 times higher yield than hot water extraction alone. Using EPG to extract alginic acid from sea mustard should be considered a viable alternative to conventional extraction, with the advantage of reducing hazardous wastes such as strong acid and alkali solutions.

EFFECT OF ADDITION OF INTACT OR ALKALIZED LUCERNE JUICE AT ENSILING ON THE NUTRITIVE VALUE OF RICE STRAW SILAGE

  • Nishino, N.;Ohshima, M.;Yokota, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.5 no.3
    • /
    • pp.487-494
    • /
    • 1992
  • This experiment was conducted to study the effect of addition of Lucerne juice (LJ) obtained by mechanical extraction of freshly harvested crop on the nutritive value of rice straw silage. Rice straw (RS) was ensiled with intact, NaOH or $NH_3$ treated LJ at 3:7 ratio on fresh weight basis (LJ RS, LJ NaOH RS and LJ $NH_3$ RS, respectively). Each alkali was mixed with fresh juice at a level of 4% of rice straw dry matter just before ensiling. Rice straw ensiled with water was prepared as the control (W RS). In the digestion trial, goats were allocated in a $4{\times}4$ Latin-square design and fed the diet containing three parts of RS silage and one part of wheat bran (DM basis). For the goats receiving the control silage, urea was supplemented at feeding time so as to adjust the nitrogen intake except for goats on LJ $NH_3$ RS silage. Crude protein content of RS silage was increased from 5.2 to 9.1% (DM basis) by the addition of intact LJ and to about 24% by $NH_3$ treated LJ. The control W RS silage contained only trace amount of lactic acid and was dominated by acetic and butyric acid. The addition of intact LJ reduced butyric acid content and $NH_3-N/TN$ of the silage whereas the addition of alkalized LJ increased those values and shifted to a butyrate type fermentation. Nutrient digestibilities and nitrogen balance of goats were almost the same when they were fed W RS and LJ RS silage indicating the addition of intact LJ did not improve the nutritive value. The addition of alkalized LJ significantly increased the fiber digestibilities of RS silage and $NH_3$ treatment was more effective than NaOH treatment. Postprandial ruminal $NH_3-N$ and blood urea nitrogen (BUN) concentrations were decreased by feeding LJ NaOH RS silage suggesting ruminal protein synthesis was enhanced along with the increase of energy supply for supply for rumen microbes by the alkali treatment. The advantageous fiber digestibilities of LJ $NH_3$ RS silage compared with those of LJ NaOH RS silage might be attributable to a sufficient nitrogen supply for microbial fiber digestion in the rumen.

The study on Natural Dyeability of silk with Artemisia Extract (야생쑥 추출물을 이용한 견직물의 천연염색성에 관한 연구)

  • 박영득
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.3 no.1
    • /
    • pp.33-46
    • /
    • 2001
  • The purpose of this study was to investigate the natural dyeability of silk on extract of Artemisia princeps, The experimental items were divided into the mordanting method. comonent of fabric, kind of mordant. The experimental study was done by laundering fastness, abrasion(dry/wet) fastness, perspiration(acid/alkali) fastness, light fastness test and color difference by C.C.M system. The summarized finding resulted from experiments and investigation are suggested as follows; First, in the C. C. M test on mordanting methods, color difference was significantly improved when mordants were treatmented. And the premordanting method showed the highest color difference, color was most yellow-greenish, Second, in the C.C.M test on component of fabrics, color difference of silk was higher than cotton. It is considered that silk has -$NH_2$ , -COOH, -OH than more than cotton. Third, in dyeing-fastness on mordants, laundering fastness showed that color-change was 2~3 grade, the contamination on attached fabric was 4~5 grade. perspiration fastness(acid/alkali) showed 4~5 grade nearly and those of acid was higher than alkali. abrasion fastness(dry/wet) was 4~5 grade and in Fe(3~4 grade) was lower than the other mordants. Forth, in color difference analysis on mordants, Fe(50.0) showed the highest and the order of color difference was alum(16.0), Cu(7.2), Sn(3.5), Al(3.1), Cr(2.3), The Hue was turned into yellow-greenish in alum mordant treatment, the luminocity of color was most dark in Fe(-48.9) and Cu(-7.2), chroma was the highest in alum (15.7) method.

  • PDF