• Title/Summary/Keyword: acetyl xylan esterase

Search Result 14, Processing Time 0.02 seconds

Cloning and Heterologous Expression of Acetyl Xylan Esterase from Aspergillus ficuum

  • Jeong, Hye-Jong;Park, Seung-Mun;Yang, Mun-Sik;Kim, Dae-Hyeok
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.153-156
    • /
    • 2000
  • Xylan, the major hemicellulose component of many plants, occurs naturally in a partially acetylated form and lignin, the most resistant component in plant cell wall degradation, is also attached to ${\beta}-1,4-linked-D-xylose$ backbone through the ester linkage. Esterases are required to release the esterified substituent and acetyl esterases are important in the complete degradation of acetylated polysaccharides, like pectins and xylans. The gene(Axe) encoding acetyl xylan estarase(AXE) was isolated from genomic ${\lambda}$ library from Aspergillus ficuum. Nucleotide sequencing of the Axe gene indicated that the gene was separated with two intervening sequences and the amino acid sequence comparison revealed that it was closely related to that from A. awamori with the 92 % indentity. Heterologous expression of AXE was conducted by using YEp352 and Saccharomyces cerevisae 2805 as a vector and host expression system, respectively. The Axe gene was placed between GAL1 promoter and GAL7 terminator and then this recombinant vector was used to transform S. cerevisiae 2805 strain. Culture filtrate of the transformed yeast was assayed for the presence of AXE activity by spectrophotometry and, comparing with the host strain, four to five times of enzyme activity was detected in culture filtrate of transformed yeast.

  • PDF

Production and Location of Xylanolytic Enzymes in Alkaliphilic Bacillus sp. K-1

  • Lee Yun-Sik;Ratanakhanokchai Khanok;Piyatheerawong Weela;Kyu Khin-Lay;Rho Min-Suk;Kim Yong-Seok;Om Aeson;Lee Joo-Won;Jhee Ok-Hwa;Chon Gil-Hyung;Park Hyun;Kang Ju-Seop
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.921-926
    • /
    • 2006
  • The production and location of xylanolytic enzymes in alkaliphilic Bacillus sp. K-1, isolated from the wastewater treatment plant of the pulp and paper industry, was studied. When grown in alkaline xylan medium, the bacteria produced xylanolytic enzymes such as xylanase, $\beta$-xylosidase, arabinofuranosidase, and acetyl esterase. Two types of xylanases (23 and 45 kDa) were found to be extracellular, but another type of xylanase (35 and/or 40 kDa) was detected as pellet-bound that was eluted with 2% triethylamine from the residual xylan of the culture. The xylanases were different in their molecular weight and xylan-binding ability. Arabinofuranosidase and $\beta$-xylosidase were found to be intracellular and extracellular, respectively, and acetyl esterase was found to be extracellular. The extracellular xylanolytic enzymes effectively hydrolyzed insoluble xylan, lignocellulosic materials, and xylans in kraft pulps.

Effect of Glucose Levels and N Sources in Defined Media on Fibrolytic Activity Profiles of Neocallimastix sp. YQ1 Grown on Chinese Wildrye Grass Hay or Alfalfa Hay

  • Yang, H.J.;Yue, Q.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.3
    • /
    • pp.379-385
    • /
    • 2011
  • Ferulic acid esterase (FAE) and acetyl esterase (AE) cleave feruloyl groups substituted at the 5'-OH group of arabinosyl residues and acetyl groups substituted at O-2/O-3 of the xylan backbone, respectively, of arabinoxylans in the cell wall of grasses. In this study, the enzyme profiles of FAE, AE and polysaccharide hydrolases of the anaerobic rumen fungus Neocallimastix sp. YQ1 grown on Chinese wildrye grass hay (CW) or alfalfa hay (AH) were investigated by two $2{\times}4$ factorial experiments, each in 10-day pure cultures. The treatments consisted of two glucose levels ($G^+$: glucose at 1.0 g/L, $G^-$: no glucose) and four N sources (N1: 1.0 g/L yeast extract, 1.0 g/L tryptone and 0.5 g/L $(NH_4)_2SO_4$; N2: 2.8 g/L yeast extract and 0.5 g/L $(NH_4)_2SO_4$; N3: 1.6 g/L tryptone and 0.5 g/L $(NH_4)_2SO_4$; N4: 1.4 g/L tryptone and 1.7 g/L yeast extract) in defined media. The optimal combinations of glucose level and N source for the fungus on CW, instead of AH, were $G^-N4$ and $G^-N3$ for maximum production of FAE and AE, respectively. Xylanase activity peaked on day 4 and day 6 for the fungus grown on CW and AH, respectively. The activities of esterases were positively correlated with those of xylanase and carboxymethyl cellulase. The fungus grown on CW exhibited a greater volatile fatty acid production than on AH with a greater release of ferulic acid from plant cell wall.

Hydrolysis of Agricultural Residues and Kraft Pulps by Xylanolytic Enzymes from Alkaliphilic Bacillus sp. Strain BK

  • Kaewintajuk Kusuma;Chon Gil-Hyong;Lee Jin-Sang;Kongkiattikajorn Jirasak;Ratanakhanokchai Khanok;Kyu Khin Lay;Lee John-Hwa;Roh Min-Suk;Choi Yun-Young;Park Hyun;Lee Yun-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.8
    • /
    • pp.1255-1261
    • /
    • 2006
  • An alkaliphilic bacterium, Bacillus sp. strain BK, was found to produce extracellular cellulase-free xylanolytic enzymes with xylan-binding activity. Since the pellet-bound xylanase is eluted with 2% TEA from the pellet of the culture, they contain a xylan-binding region that is stronger than the xylan-binding xylanase of the extracellular enzyme. The xylanases had a different molecular weight and xylan-binding ability. The enzyme activity of xylanase in the extracellular fraction was 6 times higher than in the pellet-bound enzyme. Among the enzymes, xylanase had the highest enzyme activity. When Bacillus sp. strain BK was grown in pH 10.5 alkaline medium containing xylan as the sole carbon source, the bacterium produced xylanase, arabinofuranosidase, acetyl esterase, and $\beta$-xylosidase with specific activities of 1.23, 0.11, 0.06, and 0.04 unit per mg of protein, respectively. However, there was no cellulase activity detected in the crude enzyme preparation. The hydrolysis of agricultural residues and kraft pulps by the xylanolytic enzymes was examined at 50$^{\circ}C$ and pH 7.0. The rate of xylan hydrolysis in com hull was higher than those of sugarcane bagasse, rice straw, com cop, rice husk, and rice bran. In contrast, the rate of xylan hydrolysis in sugarcane pulp was 2.01 and 3.52 times higher than those of eucalyptus and pine pulp, respectively. In conclusion, this enzyme can be used to hydrolyze xylan in agricultural residues and kraft pulps to breach and regenerate paper from recycled environmental resources.