• Title/Summary/Keyword: acetate nano fiber

Search Result 6, Processing Time 0.022 seconds

Adsorption of Nicotine/Tar by Acetate Nano Fiber (아세테이트 나노섬유에 의한 니코틴/타르의 흡착)

  • Choi Chang Nam;Cho Yong Jun;Chang Mi Hwa;Cho Sung Yong
    • Textile Coloration and Finishing
    • /
    • v.17 no.4 s.83
    • /
    • pp.27-34
    • /
    • 2005
  • In order to prepare acetate nano filter for the adsorption of nicotine/tar in tobbaco, acetate nano fiber was fabricated by elecrospining from acetate solution dissolved in acetone/DMAc(2/1). Above a critical polymer concentration($15\%$), the nano fiber was formed. The average diameter of nano fiber was decreased with the applied voltage and increased with the feeding rate. Appropriate spinning condition was considered to be $15wt\%$ polymer concentration, 11.25kV applied voltage, 0.6ml/h feeding rate, and 13-15cm TCD. Using the nano fiber, acetate nano filter was fabricated. It showed good nicotine/tar adsorption ability compared with general tobbaco filter. It was considered that the increase of surface area and the development of microporous structure in filter was much affected to the adsorption of nicotine/tar.

Preparation of Cellulose Acetate Nano Fiber Non-woven by Electro-spinning (전기방사를 이용한 셀룰로오스 아세테이트 나노섬유 부직포 제조)

  • 박희천;강영식;김학용;이덕래;정용식
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2001.10a
    • /
    • pp.345-347
    • /
    • 2001
  • 전기방사(Electro-spinning)는 기존의 방사방법과는 달리 전기장의 힘을 이용하여 방사하는 방법으로 고분자용액의 적용범위가 넓고, 저렴하고 간단한 공정을 통하여, 나노크기의 섬유를 제조할 수 있는 장점이 있다. 목재 펄프를 아민옥시드계 용제의 하나인 NMMO(N-methyl-morpholine-N-oxide)에 용해시켜 습식 방사를 통하여 섬유를 제조한다. (중략)

  • PDF

Optical properties of Al doped ZnO Nanofibers Prepared by electrospinning (전기방사를 이용한 Al이 첨가된 ZnO 나노섬유의 제조 및 광학 특성평가)

  • Song, Chan-Geun;Yoon, Jong-Won
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.5
    • /
    • pp.205-209
    • /
    • 2011
  • Zinc oxide has semi-conductivity and super conductivity characteristics. It can be used optically and is applied on many areas such as gas sensor, solar cell and optical waveguide. In this paper, to improve optical characteristics of ZnO, aluminum was added on zinc oxide. Zinc oxide and aluminum zinc oxide was fabricated as nano fiber form. ZnO solution was created by mixing poly vinyl pyrrolidone, ethyl alcohol, and zinc acetate. An Al doped ZnO was created by adding aluminum solution to ZnO sol. By applying these sols on electro spinning method, nano fibers were fabricated. These fibers are heat treated at 300, 500, and $700^{\circ}C$ degrees and were analyzed with X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) to examine the nano structures. TGA and DSC measurement was also used to measure the change of mass and calorie upon temperature change. The absorbance of ZnO and Al-doped ZnO was carried out by UV-vis measurement.

Fabrication of Porous Cellulose Acetate Propionate/Polybutylene Succinate Microfibers by High Speed Centrifugal Spinning (초고속 원심방사에 의한 아세트산프로피온산 셀룰로오스/폴리부틸렌 숙시네이트 다공성 마이크론 섬유 제조)

  • Tae Young Kim;Mi Kyung Kim;Jinsoo Kim;Jungeon Lee;Jae Hoon Jung;Youngkwon Kim;Tae Hyeon Kim;Ki Young Kim;Jeong Hyun Yeum
    • Textile Coloration and Finishing
    • /
    • v.35 no.4
    • /
    • pp.239-245
    • /
    • 2023
  • Cellulose is an abundant biodegradable material in nature with excellent properties, but due to its poor processability, it has been widely studied for processing through modification. Cellulose acetate propionate (CAP) is a cellulose derivative in which the hydroxyl group of cellulose is replaced by acetyl and propionyl groups. CAP has several advantages, such as excellent solubility, structural stability, light and weather resistance, and good transparency. Porous nanofibers with excellent specific surface area, which can be applied in various fields, can be easily formed by the phase separation method using highly volatile solvents. High speed centrifugal spinning is a nano/micro fiber preparation method with advantages such as fast spinning and easy alignment control. In this study, a CAP/polybutylene succinate (PBS) spinning solution with chloroform as solvent was prepared to prepare porous microfibers and the fiber morphology was examined as a function of the disk rotation speed in an high speed centrifugal spinning device.

The impact fracture behaviors of CFRP/EVA composites by drop-weight impact test

  • Go, Sun-Ho;Kim, Hong-Gun;Shin, Hee-Jae;Lee, Min-Sang;Yoon, Hyun-Gyung;Kwac, Lee-Ku
    • Carbon letters
    • /
    • v.21
    • /
    • pp.23-32
    • /
    • 2017
  • A drop weight impact test was conducted in this study to analyze the mechanical and thermal properties caused by the changes in the ratio of carbon fiber reinforced plastic (CFRP) to ethylene vinyl acetate (EVA) laminations. The ratios of CFRP to EVA were changed from 10:0 (pure CFRP) to 9:1, 8:2, 6:4, and 5:5 by manufacturing five different types of samples, and at the same time, the mechanical/thermal properties were analyzed with thermo-graphic images. As the ratio of the CFRP lamination was increased, in which the energy absorbance is dispersed by the fibers, it was more likely for the brittle failure mode to occur. In the cases of Type 3 through Type 5, in which the role of the EVA sheet is more prominent because it absorbs the impact energy rather than dispersing it, a clear form of puncture failure mode was observed. Based on the above results, it was found that all the observation values decreased as the EVA lamination increased compared with the CFRP lamination. The EVA lamination was thus found to have a very important role in reducing the impact. However, the strain and temperature were inversely propositional.

Preparation of Coil-Embolic Material Using Syndiotactic Poly(vinyl alcohol) Gel Spun Fibers (교대배열 PVA 젤 섬유를 이용한 고분자 색전 코일 제조)

  • Seo, Young Ho;Oh, Tae Hwan;Han, Sung Soo;Joo, Sang Woo;Khil, Myeong Seob
    • Polymer(Korea)
    • /
    • v.37 no.4
    • /
    • pp.486-493
    • /
    • 2013
  • The structure, morphology, and physical properties of syndiotatic poly(vinyl alcohol) (s-PVA) gel spun fibers were investigated to prepare polymeric embolization coils. S-PVA was prepared by saponification of the poly(vinyl acetate)/poly(vinyl pivalate)(PVAc/PVPi) copolymer. The viscosity of s-PVA solutions showed shear thinning behavior and the solution formed a homogeneous phase. Based on shear viscosity change with concentration, the optimum dope concentration was selected as 13 wt%, after which s-PVA fibers were spun and the solvent was removed. The fibers were then drawn with a maximum draw ratio of 15. A polymeric embolization coil was made of the s-PVA gel-spun fibers. The fibers were wound densely onto rigid rod and then annealed at different annealing temperatures. The polymeric embolization coil annealed at $200^{\circ}C$ was similar to metallic coils and its shape was maintained well after extension. Overall, gel-spun PVA fibers performed well for the preparation of primary and secondary coils to replace metallic coils.