• Title/Summary/Keyword: acetaldehyde-induced toxicity

Search Result 10, Processing Time 0.056 seconds

Preventive Effect of Ginseng Butanol Fraction against Acetaldehyde - Induced Acute Toxicity (아세트알데히드로 유도된 급성독성에 대한 인삼부탄올 분획의 방어작용)

  • Keun Huh;Tae
    • Journal of Ginseng Research
    • /
    • v.13 no.1
    • /
    • pp.5-7
    • /
    • 1989
  • The objective of this study was to investigate the preventive effect of ginseng on acetaldehyde-induced acute toxicity in mice . Compared to the control group, treatment with acetaldehyde inhibited the hepatic cytosolic xanthine oxidise activity with increase in dose. The inhibition of enzyme activity was not changed after dialysis. Pretreatment with ginseng butanol fraction prevented the inhibition of enzyme activity by acetaldehyde. In conjunction with the our previous results (Yakhak Hoeji, 29, 18 (1985)), these results suggest that the most likely mechanism for the observed preventive effects of ginseng against the acetaldehyde-induced acute toxicity may be the decrease hepatic acetaldehyde level.

  • PDF

The Effects of Chungganhaeju-tang(Qingganjiejiu-tang) on Ethanol-mediated Cytokine Expression (청간해주탕이 에탄올 매개성 cytokine 발현에 미치는 영향)

  • 김병삼;김영철;이장훈;우홍정
    • The Journal of Korean Medicine
    • /
    • v.24 no.1
    • /
    • pp.190-201
    • /
    • 2003
  • Object : This study was designed to investigate the effects of Chungganhaeju-tang (Qingganjiejiu-tang) on cytotoxicity, growth inhibition, apoptosis and expression of cytokine in damaged HepG2 cells. Method : Toxicity on HepG2 cell induced by ethanol and acetaldehyde was measured for viability, cell growth, DNA replication and generation of apoptosis and cytokine. The recovery of the cell activity by Chungganhaeju-tang was estimated for the measured parameters using PCR with different cycle numbers, DNA gel-electrophoresis, and densitometric analysis, Results : Chungganhaeju-tang improves the recovery of HepG2 cells damaged by ethanol or acetaldehyde. The suppressed DNA synthesis of the cell damaged by ethanol or acetaldehyde is improved by Chungganhaeju-tang. A liver-protection effect was shown by the reduction of apoptosis and $TNF-{\alpha},{\;}IL-1{\beta}$ expressions that are induced by ethanol or acetaldehyde. Conclusion : The result indicates that Chungganhaeju-tang reduces toxicity induced by ethanol or acetaldehyde and recovers damaged liver function.

  • PDF

In vitro inhibition of 10-formyltetrahydrofolate dehydrogenase activity by acetaldehyde

  • Mun, Ju-Ae;Doh, Eun-Jin;Min, Hye-Sun
    • Nutrition Research and Practice
    • /
    • v.2 no.4
    • /
    • pp.195-199
    • /
    • 2008
  • Alcoholism has been associated with folate deficiency in humans and laboratory animals. Previous study showed that ethanol feeding reduces the dehydrogenase and hydrolase activity of 10-formyltetrahydrofolate dehydrogenase (FDH) in rat liver. Hepatic ethanol metabolism generates acetaldehyde and acetate. The mechanisms by which ethanol and its metabolites produce toxicity within the liver cells are unknown. We purified FDH from rat liver and investigated the effect of ethanol, acetaldehyde and acetate on the enzyme in vitro. Hepatic FDH activity was not reduced by ethanol or acetate directly. However, acetaldehyde was observed to reduce the dehydrogenase activity of FDH in a dose- and time-dependent manner with an apparent $IC_{50}$ of 4 mM, while the hydrolase activity of FDH was not affected by acetaldehyde in vitro. These results suggest that the inhibition of hepatic FDH dehydrogenase activity induced by acetadehyde may play a role in ethanol toxicity.

Effects of Antiiflammatory Agents on Acetaldehyde Induced Cytotoxicity (Acetaldehyde 유도 세포독성에 대한 항염증제의 영향)

  • 이수환;이병훈;김강석;문창규
    • Journal of Food Hygiene and Safety
    • /
    • v.8 no.3
    • /
    • pp.157-161
    • /
    • 1993
  • In order to get infonnations on the development of alcohol induced cardiovascular disorders, primary cultured vascular smooth muscle cells (PVSMC) were treated with acetaldehyde, one of the most reactive metabolites of ethanol. Acetaldehyde caused the striking release of lactate dehydrogenase (LDH) from PVSMC and it stimulated the prostaglandin synthesis in the same system. But it didn't induce cyclooxygenase activity. lipoxygenase inhibitors-propyl gallate and nordihydroguaiaretic acid could reverse the effect of acetaldehyde, but dexamethasone, a phospholipase $A_2\;(PIA_2)$ inhibitor and cyclooxygenase inhibitors except indomethacin could not protect the cells from acetaldehyde toxicity. These results indicate that enhanced prostaglandin synthesis by acetaldehyde is not a direct cause of cell death, but secondary effect due to the activation of PIAl and also, the roles of the lipoxygenase metabolites and/or $PIA_2$ activity itself might be more important in the cytotoxicity of acetaldehyde.

  • PDF

Effect of Ethanol on Allyl alcohol-Induced Toxicity (Ethanol이 Allyl alcohol 독성에 미치는 영향)

  • Lee, Joo-Young;Kim, Dae-Byung;Moon, Chang-Kiu;Chung, Jin-Ho
    • YAKHAK HOEJI
    • /
    • v.38 no.2
    • /
    • pp.107-113
    • /
    • 1994
  • Ally alcohol is metabolized in the liver through two steps, first to reactive acrolein by alcohol dehydrogenase(ADH), subsequently to acrylic acid by aldehyde dehydrogenase(ALDH). Since ethanol could compete the same enzymes to be metabolized in the liver, we have studied the interaction between allyl alcohol and ethanol on liver toxicity. Simultaneous treatment of 2 g/kg ethanol by ip administration with 40 mg/kg allyl alcohol to rats increased the lethality significantly, accompanied by potentiation of the loss of hepatic glutathione. Collectively, these findings suggested that ethanol potentiated the hepatotoxicity and lethality induced by allyl alcohol probably through competing two metabolizing enzymes, ADH and ALDH.

  • PDF

Oral Administration of Alcohol-Tolerant Lactic Acid Bacteria Alleviates Blood Alcohol Concentration and Ethanol-Induced Liver Damage in Rodents

  • Misun Yun;Hee Eun Jo;Namhee Kim;Hyo Kyeong Park;Young Seo Jang;Ga Hee Choi;Ha Eun Jo;Jeong Hyun Seo;Ji Ye Mok;Sang Min Park;Hak-Jong Choi
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.838-845
    • /
    • 2024
  • Excessive alcohol consumption can have serious negative consequences on health, including addiction, liver damage, and other long-term effects. The causes of hangovers include dehydration, alcohol and alcohol metabolite toxicity, and nutrient deficiency due to absorption disorders. Additionally, alcohol consumption can slow reaction times, making it more difficult to rapidly respond to situations that require quick thinking. Exposure to a large amount of ethanol can also negatively affect a person's righting reflex and balance. In this study, we evaluated the potential of lactic acid bacteria (LAB) to alleviate alcohol-induced effects and behavioral responses. Two LAB strains isolated from kimchi, Levilactobacillus brevis WiKim0168 and Leuconostoc mesenteroides WiKim0172, were selected for their ethanol tolerance and potential to alleviate hangover symptoms. Enzyme activity assays for alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) were then conducted to evaluate the role of these bacteria in alcohol metabolism. Through in vitro and in vivo studies, these strains were assessed for their ability to reduce blood alcohol concentrations and protect against alcohol-induced liver damage. The results indicated that these LAB strains possess significant ethanol tolerance and elevate ADH and ALDH activities. LAB administration remarkably reduced blood alcohol levels in rats after excessive alcohol consumption. Moreover, the LAB strains showed hepatoprotective effects and enhanced behavioral outcomes, highlighting their potential as probiotics for counteracting the adverse effects of alcohol consumption. These findings support the development of functional foods incorporating LAB strains that can mediate behavioral improvements following alcohol intake.

Effects of Water and Methanol Extracts of Cricket (Gryllus bimaculatus) on Alcohol Metabolism (귀뚜라미의 물 및 메탄올 추출물이 알코올 대사에 미치는 효과)

  • Lee, Yong-Woo;Lim, Soon-Sung;Ryu, Kang-Sun;Lee, Heui-Sam;Kim, Ik-Soo;Kim, Jin-Won;Ahn, Mi-Young
    • Korean Journal of Pharmacognosy
    • /
    • v.35 no.2 s.137
    • /
    • pp.175-178
    • /
    • 2004
  • The cricket has been used in East Asia as crude drugs for treating fever and hypertension, and is presently reared as a pharmaceutical insect in China and a food for animals. For the purpose of evaluating protective extracts against alcohol-induced toxicity, the extracts of the cricket (Gryllus bimaculatus) were examined in animal models acutely administered alcohol by the cricket in ICR-mice. Water and methanol extracts from the cricket, were found to cause a significant decrease (37%) in the blood ethanol concentration as well as enhancement of liver mitochondrial alcohol dehydogenase (ADH) and acetaldehyde dehydogenase (ALDH) activitieson on a single intraperitoneal administration in mice. Futhermore methanol extract was demonstrated to exhibit more potent enhancing activity on ethanol metabolism than water extract. These results suggest that water/alcohol extract of G. bimaculatus may be used as a food for reducing the toxicity of alcohol.

Collection, Identification and Hepatic Effect of Native Cordyceps militaris (새로운 번데기 동충하초의 수집, 동정 및 간기능에 미치는 효과)

  • Lee, Ki-Won;Nam, Byung-Hyouk;Jo, Wool-Soon;Oh, Su-Jung;Kang, Eun-Young;Cui, Yong;Lee, Jae-Yun;Cheon, Sang-Cheol;Jeong, Min-Ho;Lee, Jae-Dong
    • The Korean Journal of Mycology
    • /
    • v.34 no.1
    • /
    • pp.7-14
    • /
    • 2006
  • Entomopathogenic fungus Cordyceps militaris is famous for its medicinal efficacies. It has been reported to have various pharmacological activities such as anti-tumour, insecticidal, antibacterial, immunomodulatory and antioxidant. In this study, we investigated the effect of the extract of C. militaris (MPUN8501), which was identified by the analysis of the nucleotide sequences of 5.8S ribosomal RNA, on the function of liver. C. militaris powder was extracted using hot water extracts method as time, volume and temperature and using method as differential polarity of organic solvent. Each fraction was tested for the improvement of hepatic enzyme alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) activity. The BuOH extracts (CME) had highest activity which was used for the test of toxicity and efficacy of C. militaris. The enhancing effect of CME on the activity of ADH and ALDH was much more than medicine, drink, natural tea etc. Thus CME promoted the resolution of alcohol and acetaldehyde in rats, inducing recovery to normal condition rapidly. Furthermore, oral administration of CME effectively protected the carbon tetrachloride-induced acute hepatic injury as revealed by the hematological parameters (levels of sGOT and sGPT) and histological observation. CME was ascertained to be safe by regulatory toxicity studies of single dose toxicity and genotoxicity. These results suggest that CME would be useful for the maintaining normal hepatic activity as a functional health food.

Effects of Minerals Added to Medicinal Plant Extracts on Alcohol-Induced Oxidative Stress and Alcohol Metabolism in Rats (약용식물 추출물이 첨가된 미네랄이 알코올에 의한 산화적 스트레스 및 숙취해소에 미치는 효과)

  • Lee, Seok-Jun;Kim, Andre;Lee, Jae-Hwa;Kim, Mee-Hee;Lee, Bong-Sang;Jee, Young-Taek;Bin, Jae-Hun;Ha, Jong-Myung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.3
    • /
    • pp.393-400
    • /
    • 2011
  • This study investigates the effects of a hangover beverage (MIX) that contains minerals (highly-salty mineral water, HSMW) and several medicinal plant extracts, on antioxidant and alcohol-metabolizing enzymes in alcohol administered Sprague-Dawley rats. HSMW is pumped from below the sedimentary rock layer of Dadaepo, Busan, South Korea, which is 1,050 m below the land surface; it tastes salty, like sea water. In terms of medicinal plant extracts, the total phenolic and flavonoid contents of Rubus coreanus and Cornus officinalis were measured as being significantly higher than those in Curcuma longa. The results suggest that treatment with MIX significantly increases superoxide dismutase (SOD) activity and DPPH radical scavenging activity. In the 10% HSMW-, for MIX- and company product (CP)-treated groups, the concentration of blood alcohol was significantly reduced 1~5 hr after alcohol loading, compared to that in the control group. In hepatic alcohol-metabolizing enzyme activities, alcohol dehydrogenase (ADH) activity was found to be higher in the MIX- and CP-treated groups than in controls, whereas acetaldehyde dehydrogenase (ALDH) activity was significantly higher in the CP-treated groups than other groups. This study concludes, therefore, that MIX (HSMW) minerals, like as Zn, Ca, Mg, Mn, and others stimulate alcohol-metabolizing enzymes, while the antioxidants of plant extracts prevent the damage otherwise incurred by alcohol toxicity. These results suggest that the hangover beverage (MIX) alleviates alcohol hangover symptoms by stimulating activities related to hepatic alcohol-metabolizing enzymes and antioxidant effects.

Effect of Semisulcospira libertina Extracts from Different Extraction Processes on Liver Cell Toxicity and Ethanol Metabolism (간세포 독성과 에탄올 대사에서 추출 조건에 따른 다슬기 추출물의 효과)

  • Cho, Kyoung Hwan;Choo, Ho Jin;Seo, Min Gyun;Kim, Jong Cheol;Shin, Yu Jin;Ryu, Gi Hyung;Cho, Hee Young;Jeong, Chi-Young;Hah, Young-Sool
    • Food Engineering Progress
    • /
    • v.21 no.2
    • /
    • pp.158-166
    • /
    • 2017
  • Although Semisulcospira libertina is generally regarded as a supplement for the alleviation of alcohol hangover, little is known about its effects on cell metabolism. Therefore, this study was conducted to analyze the constituents of the extracts prepared using different extraction methods and to compare their biochemical properties. The amino acid contents were found to be much higher in acidic and enzymatic hydrolysates than hot water extracts from S. libertina. DPPH radical scavenging activities in acidic and enzymatic hydrolysates were higher than those of hot water extracts. Three types of S. libertina hydrolysate was added to HepG2 cells damaged by acetaminophen (AAP), after which the survival rate of HepG2 cell were measured. In addition, lactate dehydrogenase (LDH) activities in the culture media were evaluated. The survival rates of HepG2 cells were $77.0{\pm}4.3%$ and $81.5{\pm}1.3%$ at 3 h and 5h enzymatic hydrolysates, respectively. These cell survival rates were higher compared to those of the negative control group ($67.8{\pm}4.3%$) treated only with acetaminophen. Cellular toxicities induced by treatment with AAP were also significantly alleviated in response to treatment with the extracts of S. libertina. In addition, the activities of 2 key enzymes that metabolize ethanol, alcohol dehydrogenase and aldehyde dehydrogenase, were upregulated by 4.7- and 2.7-fold respectively in response to treatment with a 3 h enzymatic hydrolysate of S. libertina. Taken together, these results provide biochemical evidence of the method by which S. libertina exerts its biological functions, including the alleviation of alcohol hangover and the protection of liver cells against toxic insults.