• Title/Summary/Keyword: accurate prediction

Search Result 2,224, Processing Time 0.04 seconds

Water Demand Forecasting by Characteristics of City Using Principal Component and Cluster Analyses

  • Choi, Tae-Ho;Kwon, O-Eun;Koo, Ja-Yong
    • Environmental Engineering Research
    • /
    • v.15 no.3
    • /
    • pp.135-140
    • /
    • 2010
  • With the various urban characteristics of each city, the existing water demand prediction, which uses average liter per capita day, cannot be used to achieve an accurate prediction as it fails to consider several variables. Thus, this study considered social and industrial factors of 164 local cities, in addition to population and other directly influential factors, and used main substance and cluster analyses to develop a more efficient water demand prediction model that considers unique localities of each city. After clustering, a multiple regression model was developed that proved that the $R^2$ value of the inclusive multiple regression model was 0.59; whereas, those of Clusters A and B were 0.62 and 0.74, respectively. Thus, the multiple regression model was considered more reasonable and valid than the inclusive multiple regression model. In summary, the water demand prediction model using principal component and cluster analyses as the standards to classify localities has a better modification coefficient than that of the inclusive multiple regression model, which does not consider localities.

An assessment of machine learning models for slump flow and examining redundant features

  • Unlu, Ramazan
    • Computers and Concrete
    • /
    • v.25 no.6
    • /
    • pp.565-574
    • /
    • 2020
  • Over the years, several machine learning approaches have been proposed and utilized to create a prediction model for the high-performance concrete (HPC) slump flow. Despite HPC is a highly complex material, predicting its pattern is a rather ambitious process. Hence, choosing and applying the correct method remain a crucial task. Like some other problems, prediction of HPC slump flow suffers from abnormal attributes which might both have an influence on prediction accuracy and increases variance. In recent years, different studies are proposed to optimize the prediction accuracy for HPC slump flow. However, more state-of-the-art regression algorithms can be implemented to create a better model. This study focuses on several methods with different mathematical backgrounds to get the best possible results. Four well-known algorithms Support Vector Regression, M5P Trees, Random Forest, and MLPReg are implemented with optimum parameters as base learners. Also, redundant features are examined to better understand both how ingredients influence on prediction models and whether possible to achieve acceptable results with a few components. Based on the findings, the MLPReg algorithm with optimum parameters gives better results than others in terms of commonly used statistical error evaluation metrics. Besides, chosen algorithms can give rather accurate results using just a few attributes of a slump flow dataset.

Survey of spatial and temporal landslide prediction methods and techniques

  • An, Hyunuk;Kim, Minseok;Lee, Giha;Viet, Tran The
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.4
    • /
    • pp.507-521
    • /
    • 2016
  • Landslides are one of the most common natural hazards causing significant damage and casualties every year. In Korea, the increasing trend in landslide occurrence in recent decades, caused by climate change, has set off an alarm for researchers to find more reliable methods for landslide prediction. Therefore, an accurate landslide-susceptibility assessment is fundamental for preventing landslides and minimizing damages. However, analyzing the stability of a natural slope is not an easy task because it depends on numerous factors such as those related to vegetation, soil properties, soil moisture distribution, the amount and duration of rainfall, earthquakes, etc. A variety of different methods and techniques for evaluating landslide susceptibility have been proposed, but up to now no specific method or technique has been accepted as the standard method because it is very difficult to assess different methods with entirely different intrinsic and extrinsic data. Landslide prediction methods can fall into three categories: empirical, statistical, and physical approaches. This paper reviews previous research and surveys three groups of landslide prediction methods.

Prediction of thermal stress in concrete structures with various restraints using thermal stress device

  • Cha, Sang Lyul;Lee, Yun;An, Gyeong Hee;Kim, Jin Keun
    • Computers and Concrete
    • /
    • v.17 no.2
    • /
    • pp.173-188
    • /
    • 2016
  • Generally, thermal stress induced by hydration heat causes cracking in mass concrete structures, requiring a thorough control during the construction. The prediction of the thermal stress is currently undertaken by means of numerical analysis despite its lack of reliability due to the properties of concrete varying over time. In this paper, a method for the prediction of thermal stress in concrete structures by adjusting thermal stress measured by a thermal stress device according to the degree of restraint is proposed to improve the prediction accuracy. The ratio of stress in concrete structures to stress under complete restraint is used as the degree of restraint. To consider the history of the degree of restraint, incremental stress is predicted by comparing the degree of restraint and the incremental stress obtained by the thermal stress device. Furthermore, the thermal stresses of wall and foundation predicted by the proposed method are compared to those obtained by numerical analysis. The thermal stresses obtained by the proposed method are similar to those obtained by the analysis for structures with internally as well as externally strong restraint. It is therefore concluded that the prediction of thermal stress for concrete structures with various boundary conditions using the proposed method is suggested to be accurate.

Uncertainties In Base Drag Prediction of A Supersonic Missile (초음속 유도탄 기저항력 예측의 불확실성)

  • Ahn H. K.;Hong S. K.;Lee B. J.;Ahn C. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.47-51
    • /
    • 2004
  • Accurate Prediction of a supersonic missile base drag continues to defy even well-rounded CFD codes. In an effort to address the accuracy and predictability of the base drags, the influence of grid system and competitive turbulence models on the base drag is analyzed. Characteristics of some turbulence models is reviewed through incompressible turbulent flow over a flat plate, and performance for the base drag prediction of several turbulence models such as Baldwin-Lomax(B-L), Spalart-Allmaras(S-A), $\kappa-\epsilon$, $\kappa-\omega$ model is assessed. When compressibility correction is injected into the S-A model, prediction accuracy of the base drag is enhanced. The NSWC wind tunnel test data are utilized for comparison of CFD and semi-empirical codes on the accuracy of base drag predictability: they are about equal, but CFD tends to perform better. It is also found that, as angle of attack of a missile with control (ins increases, even the best CFD analysis tool we have lacks the accuracy needed for the base drag prediction.

  • PDF

Prediction and Control of Welding Deformation for Panel Block Structure (평 블록 구조의 용접변형 예측 및 제어)

  • Kim, Sang-Il
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.95-99
    • /
    • 2008
  • The block assembly of ship consists of a certain type of heat processes such as cutting, bending welding residual stress relaxation and fairing. The residual deformation due to welding is inevitable at each assembly stage. The geometric inaccuracy caused by the welding deformation tends to preclude the introduction of automation and mechanization and needs the additional man-hours for the adjusting work at the following assembly stage. To overcome this problem, a distortion control method should be applied. For this purpose, it is necessary to develop an accurate prediction method which can explicitly account for the influence of various factors on the welding deformation. The validity of the prediction method must be also clarified through experiments. This paper proposes a simplified analysis method to predict the welding deformation of panel block structure. For this purpose, a simple prediction model for fillet welding deformations has been derived based on numerical and experimental results through the regression analysis. On the basis of these results, the simplified analysis method has been applied to some examples to show its validity.

Prediction of Remaining Useful Life of Lithium-ion Battery based on Multi-kernel Support Vector Machine with Particle Swarm Optimization

  • Gao, Dong;Huang, Miaohua
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1288-1297
    • /
    • 2017
  • The estimation of the remaining useful life (RUL) of lithium-ion (Li-ion) batteries is important for intelligent battery management system (BMS). Data mining technology is becoming increasingly mature, and the RUL estimation of Li-ion batteries based on data-driven prognostics is more accurate with the arrival of the era of big data. However, the support vector machine (SVM), which is applied to predict the RUL of Li-ion batteries, uses the traditional single-radial basis kernel function. This type of classifier has weak generalization ability, and it easily shows the problem of data migration, which results in inaccurate prediction of the RUL of Li-ion batteries. In this study, a novel multi-kernel SVM (MSVM) based on polynomial kernel and radial basis kernel function is proposed. Moreover, the particle swarm optimization algorithm is used to search the kernel parameters, penalty factor, and weight coefficient of the MSVM model. Finally, this paper utilizes the NASA battery dataset to form the observed data sequence for regression prediction. Results show that the improved algorithm not only has better prediction accuracy and stronger generalization ability but also decreases training time and computational complexity.

Deformation Monitoring and Prediction Technique of Existing Subway Tunnel: A Case Study of Guangzhou Subway in China

  • Qiu, Dongwei;Huang, He;Song, Dong-Seob
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.6_2
    • /
    • pp.623-629
    • /
    • 2012
  • During the construction of crossing engineering one of the important measures to ensure the safety of subway operation is the implementation of deformation surveying to the existing subway tunnel. Guangzhou new subway line 2 engineering which crosses the existing tunnel is taken as the background. How to achieve intelligent and automatic deformation surveying forecast during the subway tunnel construction process is studied. Because large amount of surveying data exists in the subway construction, deformation analysis is difficult and prediction has low accuracy, a subway intelligent deformation prediction model based on the PBIL and support vector machine is proposed. The PBIL algorithm is used to optimize the exact key parameters combination of support vector machine though probability analysis and thereby the predictive ability of the model deformation is greatly improved. Through applications on the Guangzhou subway across deformation surveying deformation engineering the prediction method's predictive ability has high accuracy and the method has high practicality. It can support effective solution to the implementation of the comprehensive and accurate surveying and early warning under subway operation conditions with the environmental interference and complex deformation.

The Effect of Data Sparsity on Prediction Accuracy in Recommender System (추천시스템의 희소성이 예측 정확도에 미치는 영향에 관한 연구)

  • Kim, Sun-Ok;Lee, Seok-Jun
    • Journal of Internet Computing and Services
    • /
    • v.8 no.6
    • /
    • pp.95-102
    • /
    • 2007
  • Recommender System based on the Collaborative Filtering has a problem of trust of the prediction accuracy because of its problem of sparsity. If the sparsity of a preference value is large, it causes a problem on a process of a choice of neighbors and also lowers the prediction accuracy. In this article, a change of MAE based on the sparsity is studied, groups are classified by sparsity and then, the significant difference among MAEs of classified groups is analyzed. To improve the accuracy of prediction among groups by the problem of sparsity, We studied the improvement of an accurate prediction for recommending system through reducing sparsity by sorting sparsity items, and replacing the average preference among them that has a lot of respondents with the preference evaluation value.

  • PDF

Influencing factors and prediction of carbon dioxide emissions using factor analysis and optimized least squares support vector machine

  • Wei, Siwei;Wang, Ting;Li, Yanbin
    • Environmental Engineering Research
    • /
    • v.22 no.2
    • /
    • pp.175-185
    • /
    • 2017
  • As the energy and environmental problems are increasingly severe, researches about carbon dioxide emissions has aroused widespread concern. The accurate prediction of carbon dioxide emissions is essential for carbon emissions controlling. In this paper, we analyze the relationship between carbon dioxide emissions and influencing factors in a comprehensive way through correlation analysis and regression analysis, achieving the effective screening of key factors from 16 preliminary selected factors including GDP, total population, total energy consumption, power generation, steel production coal consumption, private owned automobile quantity, etc. Then fruit fly algorithm is used to optimize the parameters of least squares support vector machine. And the optimized model is used for prediction, overcoming the blindness of parameter selection in least squares support vector machine and maximizing the training speed and global searching ability accordingly. The results show that the prediction accuracy of carbon dioxide emissions is improved effectively. Besides, we conclude economic and environmental policy implications on the basis of analysis and calculation.