• Title/Summary/Keyword: accurate information

Search Result 6,490, Processing Time 0.051 seconds

Changes in Anthocyanin Content of Aronia (Aronia melancocarpa) by Processing Conditions (물리적 처리조건 변화에 따른 아로니아(Aronia melancocarpa) 유래 안토시아닌 함량변화 특성)

  • Kim, Bo Mi;Lee, Kyung Min;Jung, In Chan
    • Korean Journal of Plant Resources
    • /
    • v.30 no.2
    • /
    • pp.152-159
    • /
    • 2017
  • The purpose of this study was to obtain basic data for using Aronia as a functional food material. The composition of anthocyanin was characterized and quantitated by LC-MS/MS, HPLC, and UV-VIS spectrophotometer techniques, respectively. The anthocyanin content was analyzed by temperature, time, pH, and the addition of citric acid. The UV-VIS spectrophotometer used for analysis of anthocyanin is less accurate than the LC-MS/MS method used in recent years. In the past, cyanidin-3-Glucoside was reported to be a major anthocyanin that contains Aronia. However, LC-MS/MS analysis in this study confirmed cyanidin-3-galactoside to be the major compound. The anthocyanin content of the Aronia powder began to decrease sharply at a temperature of $65^{\circ}C$ or higher when heated for 24 hours. In an aqueous solution of Aronia, the anthocyanin content was reduced by 50% at $65^{\circ}C$ for 10 hours and decreased by 85% at $85^{\circ}C$ within 10 hours. Above pH 8, the anthocyanin content was reduced by more than 50%. The results of this study will provide useful information to maintain anthocyanin content in the manufacturing process of Aronia. It could also be used to ensure the stability of anthocyanins in similar species of berries.

Identification of Microplastics in Sea Salts by Raman Microscopy and FT-IR Microscopy (라만 및 FT-IR 현미경을 이용한 천일염 중 미세플라스틱 분석)

  • Cho, Soo-Ah;Cho, Won-Bo;Kim, Su-Bin;Chung, Jae-Hak;Kim, Hyo-Jin
    • Analytical Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.243-251
    • /
    • 2019
  • Microplastics (MP) are found in large quantities in the oceans, posing a major threat to the ecosystem. In Korea, MPs have been reported to be detected in sea salts. In order to analyze MPs, information on their composition, size, and shape is required. FT-IR microscopy is used frequently to measure sizes larger than 20 ㎛. Recently, however, Raman microscopy, which can analyze ultrafine plastics below 20 ㎛, has been applied extensively. In this study, 10.0 g samples of commercially available salts were dissolved and filtered through a 45 ㎛ mesh filter with a size of 25.4 mm × 25.4 mm. These filtered samples were then analyzed by both FT-IR microscopy and Raman microscopy. A total of four MPs, including three polyethylene (PE) of size 70-100 ㎛ and a polypropylene (PP) of size 170 ㎛, were detected by FT-IR microscopy, while 10 MPs, including nine PE of size 10-120 ㎛ and one polystyrene (PS) of size 40 ㎛, were detected by Raman microscopy. Approximately, 1,000 MPs/kg was estimated, which was almost two times higher than the previous reported levels (~550-681 particles/kg in sea salts); this is because Raman microscopy can detect much smaller MPs than FT-IR microscopy. A total of 113 particles were found using Raman microscopy: Carbon (35, 31.5 %), minerals (28, 25 %), and glass (16, 14.4 %) were dominant, forming around 70% of the total, but MPs (10, 8.8 %) and cellulose (5, 4.5 %) were also found. Raman microscopy has great potential as an accurate method for measuring MPs, as it can measure smaller size MPs than FT-IR microscopy. It also has a reduced sample preparation time.

Independent Verification Program for High-Dose-Rate Brachytherapy Treatment Plans (고선량률 근접치료계획의 정도보증 프로그램)

  • Han Youngyih;Chu Sung Sil;Huh Seung Jae;Suh Chang-Ok
    • Radiation Oncology Journal
    • /
    • v.21 no.3
    • /
    • pp.238-244
    • /
    • 2003
  • Purpose: The Planning of High-Dose-Rate (HDR) brachytherapy treatments are becoming individualized and more dependent on the treatment planning system. Therefore, computer software has been developed to perform independent point dose calculations with the integration of an isodose distribution curve display into the patient anatomy images. Meterials and Methods: As primary input data, the program takes patients'planning data including the source dwell positions, dwell times and the doses at reference points, computed by an HDR treatment planning system (TPS). Dosimetric calculations were peformed in a $10\times12\times10\;Cm^3$ grid space using the Interstitial Collaborative Working Group (ICWG) formalism and an anisotropy table for the HDR Iridium-192 source. The computed doses at the reference points were automatically compared with the relevant results of the TPS. The MR and simulation film images were then imported and the isodose distributions on the axial, sagittal and coronal planes intersecting the point selected by a user were superimposed on the imported images and then displayed. The accuracy of the software was tested in three benchmark plans peformed by Gamma-Med 12i TPS (MDS Nordion, Germany). Nine patients'plans generated by Plato (Nucletron Corporation, The Netherlands) were verified by the developed software. Results: The absolute doses computed by the developed software agreed with the commercial TPS results within an accuracy of $2.8\%$ in the benchmark plans. The isodose distribution plots showed excellent agreements with the exception of the tip legion of the source's longitudinal axis where a slight deviation was observed. In clinical plans, the secondary dose calculations had, on average, about a $3.4\%$ deviation from the TPS plans. Conclusion: The accurate validation of complicate treatment plans is possible with the developed software and the qualify of the HDR treatment plan can be improved with the isodose display integrated into the patient anatomy information.

The study of bone density assessment on dental implant sites (임플란트 식립 부위의 골밀도 평가에 관한 연구)

  • Park, Su-Won;Jang, Soo-Mi;Choi, Byoung-Hwan;Son, Han-Na;Park, Bong-Chan;Kim, Chang-Hwan;Son, Jang-Ho;Sung, Iel-Yong;Lee, Ji-Ho; Cho, Yeong-Cheol
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.36 no.5
    • /
    • pp.417-422
    • /
    • 2010
  • Introduction: Bone density is one of the important factors for the long term success of endosseous implants. The bone density varies from site to site and from patient to patient. A preoperative evaluation of the bone density is quite useful to oral surgeons for planning dental implantation. More accurate information on the bone density will help surgeons identify suitable implant sites, thereby increase the success rate of dental implantation. This study examined the correlation between the bone density measured preoperatively by computed tomography (CT) and the implant primary stability measured by resonance frequency analysis. Furthermore, the effects of the implant sites, gender, age and generalized systemic disorder patients on the bone density and primary implant stability were examined. Materials and Methods: One hundred and fourteen patients were selected. None of the patients had undergone a tooth extraction or bone graft history in the previous year. Preoperatively, the patients underwent CT scanning to evaluate the Hounsfield unit (HU), and resonance frequency analysis (RFA) was used to evaluate the implant primary stability at the time of implant installation. All implants were 4.0 mm diameter and 11.5 mm length US II. All patients were recorded and the HU and implant stability quotient (ISQ) value were evaluated according to the sites, gender and age. Results: The highest HU values were found in the mandibular anterior site ($827.6{\pm}151.4$), followed by the mandibular molar site ($797{\pm}135.1$), mandibular premolar site ($753.8{\pm}171.2$), maxillary anterior site ($726.3{\pm}154.4$), maxillary premolar site ($656.7{\pm}173.8$) and maxillary molar site ($621.5{\pm}164.9$). The ISQ value was the highest in the mandibular premolar site ($81.5{\pm}2.4$) followed by the mandibular molar site ($80.0{\pm}5.7$), maxillary anterior site ($77.4{\pm}4.1$), mandibular anterior site ($76.4{\pm}11.9$), maxillary premolar site ($74.2{\pm}14.3$) and maxillary molar site ($73.7{\pm}7.4$). The mean HU and ISQ value were similar in females and males. (HU: P=0.331, ISQ: P=0.595) No significant difference was also found in the age group respectively. However, the correlation coefficients between the variables showed a closed correlation between the HU and ISQ value. Conclusion: These results showed close correlation between the bone density (HU) and primary stability value (ISQ) at the time of implant installation (Correlation coefficients=0.497, P<0.01). These results strengthen the hypothesis that it might be possible to predict and quantify the initial implant stability and bone density from a presurgical CT diagnosis.

HYPER SUPRIME-CAMERA SURVEY OF THE AKARI NEP WIDE FIELD

  • Goto, Tomotsugu;Toba, Yoshiki;Utsumi, Yousuke;Oi, Nagisa;Takagi, Toshinobu;Malkan, Matt;Ohayma, Youichi;Murata, Kazumi;Price, Paul;Karouzos, Marios;Matsuhara, Hideo;Nakagawa, Takao;Wada, Takehiko;Serjeant, Steve;Burgarella, Denis;Buat, Veronique;Takada, Masahiro;Miyazaki, Satoshi;Oguri, Masamune;Miyaji, Takamitsu;Oyabu, Shinki;White, Glenn;Takeuchi, Tsutomu;Inami, Hanae;Perason, Chris;Malek, Katarzyna;Marchetti, Lucia;Lee, HyungMoK;Im, Myung;Kim, Seong Jin;Koptelova, Ekaterina;Chao, Dani;Wu, Yi-Han;AKARI NEP Survey team;AKARIAll Sky Survey Team
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.225-230
    • /
    • 2017
  • The extragalactic background suggests half the energy generated by stars was reprocessed into the infrared (IR) by dust. At z~1.3, 90% of star formation is obscured by dust. To fully understand the cosmic star formation history, it is critical to investigate infrared emission. AKARI has made deep mid-IR observation using its continuous 9-band filters in the NEP field ($5.4deg^2$), using ~10% of the entire pointed observations available throughout its lifetime. However, there remain 11,000 AKARI infrared sources undetected with the previous CFHT/Megacam imaging (r ~25.9ABmag). Redshift and IR luminosity of these sources are unknown. These sources may contribute significantly to the cosmic star-formation rate density (CSFRD). For example, if they all lie at 1< z <2, the CSFRD will be twice as high at the epoch. We are carrying out deep imaging of the NEP field in 5 broad bands (g, r, i, z, and y) using Hyper Suprime-Camera (HSC), which has 1.5 deg field of view in diameter on Subaru 8m telescope. This will provide photometric redshift information, and thereby IR luminosity for the previously-undetected 11,000 faint AKARI IR sources. Combined with AKARI's mid-IR AGN/SF diagnosis, and accurate midIR luminosity measurement, this will allow a complete census of cosmic star-formation/AGN accretion history obscured by dust.

A Study on the Selection of Parameter Values of FUSION Software for Improving Airborne LiDAR DEM Accuracy in Forest Area (산림지역에서의 LiDAR DEM 정확도 향상을 위한 FUSION 패러미터 선정에 관한 연구)

  • Cho, Seungwan;Park, Joowon
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.3
    • /
    • pp.320-329
    • /
    • 2017
  • This study aims to evaluate whether the accuracy of LiDAR DEM is affected by the changes of the five input levels ('1','3','5','7' and '9') of median parameter ($F_{md}$), mean parameter ($F_{mn}$) of the Filtering Algorithm (FA) in the GroundFilter module and median parameter ($I_{md}$), mean parameter ($I_{mn}$) of the Interpolation Algorithm (IA) in the GridSurfaceCreate module of the FUSION in order to present the combination of parameter levels producing the most accurate LiDAR DEM. The accuracy is measured by the residuals calculated by difference between the field elevation values and their corresponding DEM elevation values. A multi-way ANOVA is used to statistically examine whether there are effects of parameter level changes on the means of the residuals. The Tukey HSD is conducted as a post-hoc test. The results of the multi- way ANOVA test show that the changes in the levels of $F_{md}$, $F_{mn}$, $I_{mn}$ have significant effects on the DEM accuracy with the significant interaction effect between $F_{md}$ and $F_{mn}$. Therefore, the level of $F_{md}$, $F_{mn}$, and the interaction between two variables are considered to be factors affecting the accuracy of LiDAR DEM as well as the level of $I_{mn}$. As the results of the Tukey HSD test on the combination levels of $F_{md}{\ast}F_{mn}$, the mean of residuals of the '$9{\ast}3$' combination provides the highest accuracy while the '$1{\ast}1$' combination provides the lowest one. Regarding $I_{mn}$ levels, the mean of residuals of the both '3' and '1' provides the highest accuracy. This study can contribute to improve the accuracy of the forest attributes as well as the topographic information extracted from the LiDAR data.

Spatial Variability Analysis of Rice Yield and Grain Moisture Contents (벼 수확량 및 곡물 수분함량의 공간변이 해석)

  • Chung, Ji-Hoon;Lee, Ho-Jin;Lee, Seung-Hun;Yi, Chang-Hwan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.54 no.2
    • /
    • pp.203-209
    • /
    • 2009
  • Yield monitoring is one of a precision agriculture technology that is used most widely. It is spatial variability analysis of yield information that should be attained with yield monitoring system development. This experiment was conducted to evaluate spatial variability of yield and grain moisture content in rice paddy field, and their relationships to rice productivity. It is necessary to minimize sampling interval for accurate yield map making or to control cutting width of rice combine. Considering small rice plots such as $0.2{\sim}0.4$ ha, optimum size of sampling plot was below 15 m more than 5 m in with and length. In variable rate treatment field, average yield was similar, but yield variation was reduced than conventional field. Gap of yield by another plot in same field was bigger than half of average yield than yield variation was significantly big. Therefore yield measuring flow sensor must be able to measure at least 300 kg/10a more than 1000 kg/10a. Variation of moisture content in same field was not big and spatial dependance did not appear greatly. But, variation between different field is appeared difference according to weather circumstance before harvesting. Change of spatial dependence of yield was not big, because of field variation of moisture content is not big.

Implementation of Markerless Augmented Reality with Deformable Object Simulation (변형물체 시뮬레이션을 활용한 비 마커기반 증강현실 시스템 구현)

  • Sung, Nak-Jun;Choi, Yoo-Joo;Hong, Min
    • Journal of Internet Computing and Services
    • /
    • v.17 no.4
    • /
    • pp.35-42
    • /
    • 2016
  • Recently many researches have been focused on the use of the markerless augmented reality system using face, foot, and hand of user's body to alleviate many disadvantages of the marker based augmented reality system. In addition, most existing augmented reality systems have been utilized rigid objects since they just desire to insert and to basic interaction with virtual object in the augmented reality system. In this paper, unlike restricted marker based augmented reality system with rigid objects that is based in display, we designed and implemented the markerless augmented reality system using deformable objects to apply various fields for interactive situations with a user. Generally, deformable objects can be implemented with mass-spring modeling and the finite element modeling. Mass-spring model can provide a real time simulation and finite element model can achieve more accurate simulation result in physical and mathematical view. In this paper, the proposed markerless augmented reality system utilize the mass-spring model using tetraheadron structure to provide real-time simulation result. To provide plausible simulated interaction result with deformable objects, the proposed method detects and tracks users hand with Kinect SDK and calculates the external force which is applied to the object on hand based on the position change of hand. Based on these force, 4th order Runge-Kutta Integration is applied to compute the next position of the deformable object. In addition, to prevent the generation of excessive external force by hand movement that can provide the natural behavior of deformable object, we set up the threshold value and applied this value when the hand movement is over this threshold. Each experimental test has been repeated 5 times and we analyzed the experimental result based on the computational cost of simulation. We believe that the proposed markerless augmented reality system with deformable objects can overcome the weakness of traditional marker based augmented reality system with rigid object that are not suitable to apply to other various fields including healthcare and education area.

The spectrum of 5p deletion in Korean 20 patients with Cri du chat syndrome (한국인 묘성증후군 20명 환자에서의 5p 결실 양상 분석)

  • Park, Sang-Jin;Kim, Sook-Ryung;Baek, Kum-Nyeo;Yoon, Joon-No;Jeong, Eun-Jeong;Kown, Ji-Eun;Kim, Hyon-J.
    • Journal of Genetic Medicine
    • /
    • v.4 no.2
    • /
    • pp.133-141
    • /
    • 2007
  • Purpose : Cri-du-Chat syndrome (CdCs) is a rare but clinically recongnizable condition with an estimated incidence of 1:50,000 live births. The clinical characteristics of the syndrome include severe psychomotor and mental retardation, microcephaly, hypertelorism, hypotonia, and slow growth. Also the size of the chromosome 5p deletion ranges were known from the region 5p13 to the terminal region. In this study, we report the spectrum of 5p deletion in Korean 20 pts. with CdCs and genotype-phenotype associations in CdCs. Methods : In order to delineate genotype-phenotype correlation, molecular cytogenetic studies including GTG banding and clinical characterization were performed on Korean 20 pts with CdCs including parents. CGH array and Fluorescence in situ hybridization (FISH) analysis were used to confirm a terminal deletion karyotype and map more precisely the location of the deletion breakpoint. Results : Molecular analysis of the spectrum of 5p deletion revealed 9 pts (45%) with a del (5)(p14), 7 pts. (35%) a del (5)(p13), 3 pts. (15%) a del (5)(p15.1) and 1 pt. (5%) a del (5)(p15.2) in 20 pts with CdCs. 4(20%)pts were identified to have additional chromosome abnormalites of deficiency and duplication involving chromosomes of 6, 8, 18, & 22. Parental study identified 3 familial case (2 paternal and 1 maternal origin) showing parents being a balanced translocation carrier. And the comparison study of the deletion break points among these 20 pts. with their phenotype has showed the varying clinical pheno-types in the CdCs critical region. Conclusion : The characterization of 5p deletion including parental study may help to delineate the genotypephenotype correlation in CdCs. Also these molecular cytogenetic analyses will be able to offer better information for accurate genetic diagnosis in CdCs and further make possible useful genetic counseling in pts. and family.

  • PDF

Evaluation of MR Based Respiratory Motion Correction Technique in Liver PET/MRI Study (Liver PET/MRI 검사 시 MR 기반 호흡 움직임 보정 방법의 유용성 평가)

  • Do, Yong Ho;Lee, Hong Jae;Kim, Jin Eui;Noh, Gyeong Woon
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.22 no.1
    • /
    • pp.15-22
    • /
    • 2018
  • Purpose Respiratory motion during PET/MRI acquisition may result in image blurring and error in measurement for volume and quantification of lesion. The aim of this study was to evaluate changes of quantitative accuracy, tumor size and image quality by applying MR based respiratory motion correction technique (MBRMCT) using integrated PET/MR scanner. Materials and Methods Data of 30 patients (aged $62.5{\pm}10.2y$) underwent $^{18}F-FDG$ liver PET/MR (Biograph mMR 3.0T, Siemens) study were collected. PET listmode data for 7 minutes was simultaneously acquired with maximum average gate (MAG), minimum time gate (MTG) and non gate (NG) T1 weighted MR images. Gated PET reconstruction was performed using mu-maps generated from MAG and MTG by setting 35% of efficiency window. Maximum SUV ($SUV_{max}$), peak SUV ($SUV_{peak}$), tumor size and full width at half maximum (FWHM) in the z-axis direction of MAG, MTG and NG PET images were evaluated. Results Compared to NG, mean $SUV_{max}$ and $SUV_{peak}$ were increased in MAG 13.15%(p<0.0001), 8.66%(p<0.0001), MTG 13.27%(p<0.0001), 8.80%(p<0.0001) and mean tumor size and FWHM were decreased in MAG 14.47%(p<0.0001), 15.49%(p=0.0004), MTG 14.89%(p<0.0001), 15.79%(p=0.0003) respectively. Mean $SUV_{max}$ and $SUV_{peak}$ of MTG were increased by 0.07%(p=0.8802), 0.13%(p=0.7766). Mean tumor size and FWHM of MTG were decreased by 0.49%(p=0.2786), 0.36%(p=0.2488) compared to MAG. There was no statistically significant difference between MAG and MTG which increase total scan time for about 7 and 2 minutes. Conclusion SUV, accuracy of tumor size and spatial resolution were improved in both of MAG and MTG by applying MBRMCT without installing additional hardware in liver PET/MR study. More accurate information can be provided with the increase of 2 minutes scan time if applying MTG of MBRMCT to various abdominal PET/MR studies affected by respiratory motion.