• Title/Summary/Keyword: accuracy of measurement

Search Result 4,007, Processing Time 0.034 seconds

Development of Automatic Measurement and Inspection System for ALC Block Using Camera (카메라를 이용한 ALC 블록의 치수계측 및 불량검사 자동화 시스템 개발)

  • 허경무;김성훈
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.6
    • /
    • pp.448-455
    • /
    • 2003
  • A system design technique of automatic thickness measurement and defect inspection system, which measures the thickness of the ALC(Autoclaved Lightweight Concrete) block and inspects the defect on a realtime basis is proposed. The image processing system was established with a CCD camera, an image grabber, and a personal computer without using assembled measurement equipment. The image obtained by this system was analyzed by a devised algorithm, specially designed for the enhanced measurement accuracy. For the realization of the proposed algorithm, the preprocessing method that can be applied to overcome uneven lighting environment, an enhanced edge decision method using 8 edge-pairs with irregular and rough surface, the unit length decision method in uneven condition with rocking objects, and the curvature calibration method of camera using a constructed grid are developed. The experimental results, show that the required measurement accuracy specification is sufficiently satisfied using our proposed method.

Effect of Number of Measurement Points on Accuracy of Muscle T2 Calculations

  • Tawara, Noriyuki;Nishiyama, Atsushi
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.4
    • /
    • pp.207-214
    • /
    • 2016
  • Purpose: The purpose of this study was to investigate the effect of the number of measurement points on the calculation of transverse relaxation time (T2) with a focus on muscle T2. Materials and Methods: This study assumed that muscle T2 was comprised of a single component. Two phantom types were measured, 1 each for long ("phantom") and short T2 ("polyvinyl alcohol gel"). Right calf muscle T2 measurements were conducted in 9 healthy male volunteers using multiple-spin-echo magnetic resonance imaging. For phantoms and muscle (medial gastrocnemius), 5 regions of interests were selected. All region of interest values were expressed as the mean ${\pm}$ standard deviation. The T2 effective signal-ratio characteristics were used as an index to evaluate the magnetic resonance image quality for the calculation of T2 from T2-weighted images. The T2 accuracy was evaluated to determine the T2 reproducibility and the goodness-of-fit from the probability Q. Results: For the phantom and polyvinyl alcohol gel, the standard deviation of the magnetic resonance image signal at each echo time was narrow and mono-exponential, which caused large variations in the muscle T2 decay curves. The T2 effective signal-ratio change varied with T2, with the greatest decreases apparent for a short T2. There were no significant differences in T2 reproducibility when > 3 measurement points were used. There were no significant differences in goodness-of-fit when > 6 measurement points were used. Although the measurement point evaluations were stable when > 3 measurement points were used, calculation of T2 using 4 measurement points had the highest accuracy according to the goodness-of-fit. Even if the number of measurement points was increased, there was little improvement in the probability Q. Conclusion: Four measurement points gave excellent reproducibility and goodness-of-fit when muscle T2 was considered mono-exponential.

Accuracy Assessment of Reservoir Depth Measurement Data by Unmanned Boat using GIS (GIS를 이용한 무인보트의 저수지 수심측정자료 정확도 평가)

  • Kim, Dae-Sik
    • Journal of Korean Society of Rural Planning
    • /
    • v.30 no.3
    • /
    • pp.75-84
    • /
    • 2024
  • This study developed the procedure and method for the accuracy assessment of unmanned boat survey data, based on the reservoir water depth data of Misan Reservoir, measured by the manned and unmanned boats in 2009 by Korea Rural Community Corporation. In the first step, this study devised the method to extract the contour map of NGIS data in AutoCAD to generate easily the reservoir boundary map used to set the survey range of reservoir water depth and to test the survey accuracy. The surveyed data coordinate systems of the manned and the unmanned boat were also unified by using ArcGIS for the standards of accuracy assessment. In the accuracy assessment, the spatial correlation coefficient of the grid maps of the two measurement results was 0.95, showing high pattern similarity, although the average error was high at 78cm. To analyze in more detail assessment, this study generated randomly the 3,250m transverse profile route (PR), and then extracted grid values of water depth on the PR. In the results of analysis to the extracted depth data on PR, the error average difference of the unmanned boat measurements was 73.18cm and the standard deviation of the error was 55cm compared to the manned boat. This study set these values as the standard for the correction value by average shift and noise removal of the unmanned boat measurement data. By correcting the unmanned boat measurements with these values, this study has high accuracy results, the reservoir water depth and surface area curve with R2 = 0.97 and the water depth and storage volume curve with R2 = 0.999.

Experimental verification and improvement of heat transfer tube local wall temperature measurement method

  • Jiabao Liu;Xiaxin Cao;Peixun Yang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4317-4328
    • /
    • 2023
  • To ensure the measuring accuracy of the wall temperature, the outer wall temperature measurement values by using three kinds of thermocouple welding methods were analyzed and evaluated in the paper, including single-point flush-mounted in the wall groove method, single-point insert-mounted in the wall groove, and outer surface direct welding method, based on the application of a tube-in-tube condensing heat exchanger. And the impacts of silver, tin, and thermal resistance adhesive as filling materials on wall temperature measurement were also investigated, and the results were compared to that obtained without filling materials. The results showed that the wall temperatures measured by the three welding methods were lower than the theoretically calculated value. And the wall temperature measured by the outer surface direct welding method was lowest under the same experimental conditions. The wall temperatures measured by single-point flush-mounted and insert-mounted in the wall groove methods were also affected by different welding filling materials. It was found that the greater the thermal resistance of filling materials, the smaller the heat loss. By analyzing the reasons for the low measured value of wall temperature, a new wall temperature measurement method was developed to improve the accuracy of the current measurement method. Meanwhile, the outer wall temperature measurement experiments of vertical and horizontal heat transfer tubes were carried out to validate and calibrate the improved outer wall temperature measurement method. The results showed that the average outer wall temperature deviation measured by the improved wall temperature measurement method ranged from - 0.82% to +2.29% for vertical tubes and - 4.75% to - 1.44% for horizontal tubes, and the improved measurement method had good measurement accuracy.

A Study on Smart Accuracy Control System based on Augmented Reality and Portable Measurement Device for Shipbuilding (조선소 블록 정도관리를 위한 경량화 측정 장비 및 증강현실 기반의 스마트 정도관리 시스템 개발)

  • Nam, Byeong-Wook;Lee, Kyung-Ho;Lee, Won-Hyuk;Lee, Jae-Duck;Hwang, Ho-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.1
    • /
    • pp.65-73
    • /
    • 2019
  • In order to increase the production efficiency of the ship and shorten the production cycle, it is important to evaluate the accuracy of the ship components efficiently during the drying cycle. The accuracy control of the block is important for shortening the ship process, reducing the cost, and improving the accuracy of the ship. Some systems have been developed and used mainly in large shipyards, but in some cases, they are measured and managed using conventional measuring instruments such as tape measure and beam, optical instruments as optical equipment, In order to perform accuracy control, these tools and equipment as well as equipment for recording measurement data and paper drawings for measuring the measurement position are inevitably combined. The measured results are managed by the accuracy control system through manual input or recording device. In this case, the measurement result is influenced by the work environment and the skill level of the worker. Also, in the measurement result management side, there are a human error about the lack of the measurement result creation, the lack of the management sheet management, And costs are lost in terms of efficiency due to consumption. The purpose of this study is to improve the working environment in the existing accuracy management process by using the augmented reality technology to visualize the measurement information on the actual block and to obtain the measurement information And a smart management system based on augmented reality that can effectively manage the accuracy management data through interworking with measurement equipment. We confirmed the applicability of the proposed system to the accuracy control through the prototype implementation.

The Verification of Accuracy of 3D Body Scan Data - Focused on the Cyberware WB4 Whole Body Scanner - (3차원 인체 스캔 데이터의 정확도 검증에 관한 연구 - Cyberware의 WB4 스캐너를 중심으로 -)

  • Park, Sun-Mi;Nam, Yun-Ja
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.14 no.1
    • /
    • pp.81-96
    • /
    • 2012
  • The purpose of this study is to provide fundamental information for standardization of 3D body measurement. This research analyzes errors occurring in the process of extracting body size from 3D body scan data. First, as a result of analyzing basic state of the 3D body scanner's calibration, the point number of each section was almost the same, while the right and left as well as the front and back coordinates of the center of gravity are not, showing unstable data. Nevertheless, the latter does not influence on the size of cylinder such as width and circumference. Next, we analyzed point coordinates variations of scan data on a mannequin nude by life casting. The result was great deflection in case of complicated or horizontal sections including the reference point beyond proper distance from centers of four cameras. In case of the mannequin's size, accuracy proves comparatively high in that measurement errors in height, width, depth, and length dimension occurred all within allowable errors, only except chest depth, while there were a lot of measurement errors in a circumference dimension. Secondly, analysis of accuracy of automatic extraction identification program algorithm presented that a semi-automatic measurement program is better than an automatic measurement program. While both of them ate very acute in parts related to crotch, they are not in armpit related parts. Therefore, in extracting of human body size from 3D scan data, what really matters seems to parts related to armpits.

  • PDF

Performance evaluation study of a commercially available smart patient-controlled analgesia pump with the microbalance method and an infusion analyzer

  • Park, Jinsoo;Jung, Bongsu
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.22 no.2
    • /
    • pp.129-143
    • /
    • 2022
  • Background: Patient-controlled analgesia (PCA) has been widely used as an effective medical treatment for pain and for postoperative analgesia. However, improper dose errors in intravenous (IV) administration of narcotic analgesics from a PCA infusion pump can cause patient harm. Furthermore, opioid overdose is considered one of the highest risk factors for patients receiving pain medications. Therefore, accurate delivery of opioid analgesics is a critical function of PCA infusion pumps. Methods: We designed a microbalance method that consisted of a closed acrylic chamber containing a layer and an oil layer with an electronic balance. A commercially available infusion analyzer (IDA-5, Fluke Co., Everett, WA, USA) was used to measure the accuracy of the infusion flow rate from a commercially available smart PCA infusion pump (PS-1000, UNIMEDICS, Co., Ltd., Seoul, Korea) and compared with the results of the microbalance method. We evaluated the uncertainty of the flow rate measurement using the ISO guide (GUM:1995 part3). The battery life, delay time of the occlusion alarm, and bolus function of the PCA pump were also tested. Results: The microbalance method was good in the short-term 2 h measurement, and IDA-5 was good in the long-term 24 h measurement. The two measurement systems can complement each other in the case of the measurement time. Regarding battery performance, PS-1000 lasted approximately 5 days in a 1 ml/hr flow rate condition without recharging the battery. The occlusion pressure alarm delays of PS-1000 satisfied the conventional alarm threshold of occlusion pressure (300-800 mmHg). Average accuracy bolus volume was measured as 63%, 95%, and 98.5% with 0.1 ml, 1 ml, and 2 ml bolus volume presets, respectively. A 1 ml/hr flow rate measurement was evaluated as 2.08% of expanded uncertainty, with a 95% confidence level. Conclusion: PS-1000 showed a flow accuracy to be within the infusion pump standard, which is ± 5% of flow accuracy. Occlusion alarm of PS-1000 was quickly transmitted, resulting in better safety for patients receiving IV infusion of opioids. PS-1000 is sufficient for a portable smart PCA infusion pump.

Measurement Method of Height of White Light Scanning Interferometer using Deep Learning (Deep Learning을 사용한 백색광 주사 간섭계의 높이 측정 방법)

  • Baek, Sang Hyune;Hwang, Wonjun
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.8
    • /
    • pp.864-875
    • /
    • 2018
  • In this paper, we propose a measurement method for height of white light scanning interferometer using deep learning. In order to measure the fine surface shape, a three-dimensional surface shape measurement technique is required. A typical example is a white light scanning interferometer. In order to calculate the surface shape from the measurement image of the white light scanning interferometer, the height of each pixel must be calculated. In this paper, we propose a neural network for height calculation and use virtual data generation method to train this neural network. The accuracy was measured by inputting 57 actual data to the neural network which had completed the learning. We propose two new functions for accuracy measurement. We have analyzed the cases where there are many errors among the accuracy calculation values, and it is confirmed that there are many errors when there is no interference fringe or outside the learned range. We confirmed that the proposed neural network works correctly in most cases. We expect better results if we improve the way we generate learning data.

Optimize OTDOA-based Positioning Accuracy by Utilizing Multiple Linear Regression Model under NB-IoT Technology (NB-IoT 기술에서 Multiple Linear Regression Model을 활용하여 OTDOA 기반 포지셔닝 정확도 최적화)

  • Pan, Yichen;Kim, Jaesoo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.139-142
    • /
    • 2020
  • NB-IoT(Narrow Band Internet of Things) is an emerging LPWAN(Low Power Wide Area Network) radio technology. NB-IoT has many advantages like low power, low cost, and high coverage. However low bandwidth and low sampling rates also lead to poor positioning accuracy. This paper proposed a solution to optimize positioning accuracy under the OTDOA(Observed Time Difference of Arrival) approach by utilizing MLR(Multiple Linear Regression) models. Through the MLR model to predict the influence degree of weather(temperature, humidity, light intensity and air pressure) on the arrival time of signal transmission to improve the measurement accuracy. The improvement of measurement accuracy can greatly improve IoT applications based on NB-IoT.

  • PDF

An Analysis of the Accuracy of Muzzle Velocity Measurement System (포구속도 계측 시스템의 정확도 분석)

  • Choi, Ju-Ho;Hwang, Eui-Sung;Park, Won-Woo;Hong, Sung-Soo;Yoo, Jun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.1
    • /
    • pp.88-94
    • /
    • 1999
  • This paper presents an accuracy evaluation method for muzzle velocity measurement systems. Among various measuring techniques, the solenoid coil scheme and the doppler radar scheme are considered due to their popularity in applications. The error sources are first identified and their effects on the accuracy of the measuring systems are quantified using mathmatical equations. The theoritic accuracy limits are then verified through comparison with experimental results. From the accuracy point of view, they turn out to be standard velocity measuring systems.

  • PDF