• Title/Summary/Keyword: accuracy index

Search Result 1,237, Processing Time 0.025 seconds

A Quantitative Performance Index for Discrete-time Observer-based Monitoring Systems (이산관측기에 근거한 감지시스템을 위한 정량적 성능지표)

  • Huh, Kun-Soo;Kim, Sang-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.10
    • /
    • pp.138-148
    • /
    • 1995
  • While Model-based Monitoring systems based on state observer theory have shown much promise in the laboratory, they have not been widely accepted by industry because, inpractice, these systems often have poor performance with respect to accuracy, band-width, reliability(false alarms), and robustness. In this paper, the linitations of the deterministic discrete-time state observer are investigated quantitatively from the machine monitoring viewpoint. The limitations in the transient and steady-state observer performance are quantified as estimation error bounds from which performance indices are selected. Each index represents the conditioning of the corresponding performance. By utilizing matrix norm theory, an unified main index is determined, that dominates all the indices. This index could from the basis for an observer design methodology that should improve the performance of model-based monitoring systems.

  • PDF

Comparison of Change Detection Accuracy based on VHR images Corresponding to the Fusion Estimation Indexes (융합평가 지수에 따른 고해상도 위성영상 기반 변화탐지 정확도의 비교평가)

  • Wang, Biao;Choi, Seok Geun;Choi, Jae Wan;Yang, Sung Chul;Byun, Young Gi;Park, Kyeong Sik
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.2
    • /
    • pp.63-69
    • /
    • 2013
  • Change detection technique is essential to various applications of Very High-Resolution(VHR) satellite imagery and land monitoring. However, change detection accuracy of VHR satellite imagery can be decreased due to various geometrical dissimilarity. In this paper, the existing fusion evaluation indexes were revised and applied to improve VHR imagery based change detection accuracy between multi-temporal images. In addition, appropriate change detection methodology of VHR images are proposed through comparison of general change detection algorithm with cross-sharpened image based change detection algorithm. For these purpose, ERGAS, UIQI and SAM, which were representative fusion evaluation index, were applied to unsupervised change detection, and then, these were compared with CVA based change detection result. Methodologies for minimizing the geometrical error of change detection algorithm are analyzed through evaluation of change detection accuracy corresponding to image fusion method, also. The experimental results are shown that change detection accuracy based on ERGAS index by using cross-sharpened images is higher than these based on other estimation index by using general fused image.

Artificial Neural Network System in Evaluating Cervical Lymph Node Metastasis of Squamous Cell Carcinoma (편평세포암종 임파절 전이에 대한 인공 신경망 시스템의 진단능 평가)

  • Park Sang-Wook;Heo Min-Suk;Lee Sam-Sun;Choi Soon-Chul;Park Tae-Won;You Dong-Soo
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.29 no.1
    • /
    • pp.149-159
    • /
    • 1999
  • Purpose: The purpose of this study was to evaluate cervical lymph node metastasis of oral squamous cell carcinoma patients by MRI film and neural network system. Materials and Methods: The oral squamous cell carcinoma patients(21 patients. 59 lymph nodes) who have visited SNU hospital and been taken by MRI. were included in this study. Neck dissection operations were done and all of the cervical lymph nodes were confirmed with biopsy. In MR images. each lymph node were evaluated by using 6 MR imaging criteria(size. roundness. heterogeneity. rim enhancement. central necrosis, grouping) respectively. Positive predictive value. negative predictive value. and accuracy of each MR imaging criteria were calculated. At neural network system. the layers of neural network system consisted of 10 input layer units. 10 hidden layer units and 1 output layer unit. 6 MR imaging criteria previously described and 4 MR imaging criteria (site I-node level II and submandibular area. site II-other node level. shape I-oval. shape II-bean) were included for input layer units. The training files were made of 39 lymph nodes(24 metastatic lymph nodes. 10 non-metastatic lymph nodes) and the testing files were made of other 20 lymph nodes(10 metastatic lymph nodes. 10 non-metastatic lymph nodes). The neural network system was trained with training files and the output level (metastatic index) of testing files were acquired. Diagnosis was decided according to 4 different standard metastatic index-68. 78. 88. 98 respectively and positive predictive values. negative predictive values and accuracy of each standard metastatic index were calculated. Results: In the diagnosis of using single MR imaging criteria. the rim enhancement criteria had highest positive predictive value (0.95) and the size criteria had highest negative predictive value (0.77). In the diagnosis of using single MR imaging criteria. the highest accurate criteria was heterogeneity (accuracy: 0.81) and the lowest one was central necrosis (accuracy: 0.59). In the diagnosis of using neural network systems. the highest accurate standard metastatic index was 78. and that time. the accuracy was 0.90. Neural network system was more accurate than any other single MR imaging criteria in evaluating cervical lymph node metastasis. Conclusion: Neural network system has been shown to be more useful than any other single MR imaging criteria. In future. Neural network system will be powerful aiding tool in evaluating cervical node metastasis.

  • PDF

Damage detection in plate structures using frequency response function and 2D-PCA

  • Khoshnoudian, Faramarz;Bokaeian, Vahid
    • Smart Structures and Systems
    • /
    • v.20 no.4
    • /
    • pp.427-440
    • /
    • 2017
  • One of the suitable structural damage detection methods using vibrational characteristics are damage-index-based methods. In this study, a damage index for identifying damages in plate structures using frequency response function (FRF) data has been provided. One of the significant challenges of identifying the damages in plate structures is high number of degrees of freedom resulting in decreased damage identifying accuracy. On the other hand, FRF data are of high volume and this dramatically decreases the computing speed and increases the memory necessary to store the data, which makes the use of this method difficult. In this study, FRF data are compressed using two-dimensional principal component analysis (2D-PCA), and then converted into damage index vectors. The damage indices, each of which represents a specific condition of intact or damaged structures are stored in a database. After computing damage index of structure with unknown damage and using algorithm of lookup tables, the structural damage including the severity and location of the damage will be identified. In this study, damage detection accuracy using the proposed damage index in square-shaped structural plates with dimensions of 3, 7 and 10 meters and with boundary conditions of four simply supported edges (4S), three clamped edges (3C), and four clamped edges (4C) under various single and multiple-element damage scenarios have been studied. Furthermore, in order to model uncertainties of measurement, insensitivity of this method to noises in the data measured by applying values of 5, 10, 15 and 20 percent of normal Gaussian noise to FRF values is discussed.

Thermal Properties and Refractive Index of $B_2O_3-Al_2O_3-SiO_2$ Glasses for Photolithographic Process of Barrier Ribs in PDP (PDP의 격벽 형성 공정인 감광성 공법에서 $B_2O_3-Al_2O_3-SiO_2$계 유리 조성의 열적 특성과 굴절률 변화)

  • Hwang, Seong-Jin;Won, Ju-Yeon;Kim, Hyung-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.321-321
    • /
    • 2008
  • To obtaingood resolution in PDP, one of the important factors is to achieve the accuracy of barrier ribs. The photolithographic process can be used to form patterns of barrier rib with high accuracy and a high aspect ratio. The composition for photolithography is based on the $B_2O_3-SiO_2-Al_2O_3$ glass system including additives such as alkali oxides and alkali earth oxides. The refractive index and thermal properties in glass system are changed by amount of alkali oxides and alkali earth oxides. Therefore, it is important that additives are controlled to have proper refractive index and thermal properties. The additives are contributed to non-bridging oxygen within the glass network, causing a change of density. In addition to a change of the structural cross-link density, the refractive index, dielectric and thermal properties glass are correlated with ionic radius and polarizability of cations. In this study, we investigated the refractive index and the thermal properties such as glass transition temperature, glass softening temperature and coefficient of thermal expansion by changing composition in the $B_2O_3-SiO_2-Al_2O_3$ glass system.

  • PDF

Prediction of coal and gas outburst risk at driving working face based on Bayes discriminant analysis model

  • Chen, Liang;Yu, Liang;Ou, Jianchun;Zhou, Yinbo;Fu, Jiangwei;Wang, Fei
    • Earthquakes and Structures
    • /
    • v.18 no.1
    • /
    • pp.73-82
    • /
    • 2020
  • With the coal mining depth increasing, both stress and gas pressure rapidly enhance, causing coal and gas outburst risk to become more complex and severe. The conventional method for prediction of coal and gas outburst adopts one prediction index and corresponding critical value to forecast and cannot reflect all the factors impacting coal and gas outburst, thus it is characteristic of false and missing forecasts and poor accuracy. For the reason, based on analyses of both the prediction indicators and the factors impacting coal and gas outburst at the test site, this work carefully selected 6 prediction indicators such as the index of gas desorption from drill cuttings Δh2, the amount of drill cuttings S, gas content W, the gas initial diffusion velocity index ΔP, the intensity of electromagnetic radiation E and its number of pulse N, constructed the Bayes discriminant analysis (BDA) index system, studied the BDA-based multi-index comprehensive model for forecast of coal and gas outburst risk, and used the established discriminant model to conduct coal and gas outburst prediction. Results showed that the BDA - based multi-index comprehensive model for prediction of coal and gas outburst has an 100% of prediction accuracy, without wrong and omitted predictions, can also accurately forecast the outburst risk even for the low indicators outburst. The prediction method set up by this study has a broad application prospect in the prediction of coal and gas outburst risk.

Use of Unmanned Aerial Vehicle Imagery and Deep Learning UNet to Classification Upland Crop in Small Scale Agricultural Land (무인항공기와 딥러닝(UNet)을 이용한 소규모 농지의 밭작물 분류)

  • Choi, Seokkeun;Lee, Soungki;Kang, Yeonbin;Choi, Do Yeon;Choi, Juweon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.671-679
    • /
    • 2020
  • In order to increase the food self-sufficiency rate, monitoring and analysis of crop conditions in the cultivated area is important, and the existing measurement methods in which agricultural personnel perform measurement and sampling analysis in the field are time-consuming and labor-intensive for this reason inefficient. In order to overcome this limitation, it is necessary to develop an efficient method for monitoring crop information in a small area where many exist. In this study, RGB images acquired from unmanned aerial vehicles and vegetation index calculated using RGB image were applied as deep learning input data to classify complex upland crops in small farmland. As a result of each input data classification, the classification using RGB images showed an overall accuracy of 80.23% and a Kappa coefficient of 0.65, In the case of using the RGB image and vegetation index, the additional data of 3 vegetation indices (ExG, ExR, VDVI) were total accuracy 89.51%, Kappa coefficient was 0.80, and 6 vegetation indices (ExG, ExR, VDVI, RGRI, NRGDI, ExGR) showed 90.35% and Kappa coefficient of 0.82. As a result, the accuracy of the data to which the vegetation index was added was relatively high compared to the method using only RGB images, and the data to which the vegetation index was added showed a significant improvement in accuracy in classifying complex crops.

Evaluation of vegetation index accuracy based on drone optical sensor (드론 광학센서 기반의 식생지수 정확도 평가)

  • Lee, Geun Sang;Cho, Gi Sung;Hwang, Jee Wook;Kim, Pyoung Kwon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.2
    • /
    • pp.135-144
    • /
    • 2022
  • Since vegetation provides humans with various ecological spaces and is also very important in terms of water resources and climatic environment, many vegetation monitoring studies using vegetation indexes based on near infrared sensors have been conducted. Therefore, if the near infrared sensor is not provided, the vegetation monitoring study has a practical problem. In this study, to improve this problem, the NDVI (Normalized Difference Vegetation Index) was used as a reference to evaluate the accuracy of the vegetation index based on the optical sensor. First, the Kappa coefficient was calculated by overlapping the vegetation survey point surveyed in the field with the NDVI. As a result, the vegetation area with a threshold value of 0.6 or higher, which has the highest Kappa coefficient of 0.930, was evaluated based on optical sensor based vegetation index accuracy. It could be selected as standard data. As a result of selecting NDVI as reference data and comparing with vegetation index based on optical sensor, the Kappa coefficients at the threshold values of 0.04, 0.08, and 0.30 or higher were the highest, 0.713, 0.713, and 0.828, respectively. In particular, in the case of the RGBVI (Red Green Red Vegetation Index), the Kappa coefficient was high at 0.828. Therefore, it was found that the vegetation monitoring study using the optical sensor is possible even in environments where the near infrared sensor is not available.

Comparison of accuracy of breeding value for cow from three methods in Hanwoo (Korean cattle) population

  • Hyo Sang Lee;Yeongkuk Kim;Doo Ho Lee;Dongwon Seo;Dong Jae Lee;Chang Hee Do;Phuong Thanh N. Dinh;Waruni Ekanayake;Kil Hwan Lee;Duhak Yoon;Seung Hwan Lee;Yang Mo Koo
    • Journal of Animal Science and Technology
    • /
    • v.65 no.4
    • /
    • pp.720-734
    • /
    • 2023
  • In Korea, Korea Proven Bulls (KPN) program has been well-developed. Breeding and evaluation of cows are also an essential factor to increase earnings and genetic gain. This study aimed to evaluate the accuracy of cow breeding value by using three methods (pedigree index [PI], pedigree-based best linear unbiased prediction [PBLUP], and genomic-BLUP [GBLUP]). The reference population (n = 16,971) was used to estimate breeding values for 481 females as a test population. The accuracy of GBLUP was 0.63, 0.66, 0.62 and 0.63 for carcass weight (CWT), eye muscle area (EMA), back-fat thickness (BFT), and marbling score (MS), respectively. As for the PBLUP method, accuracy of prediction was 0.43 for CWT, 0.45 for EMA, 0.43 for MS, and 0.44 for BFT. Accuracy of PI method was the lowest (0.28 to 0.29 for carcass traits). The increase by approximate 20% in accuracy of GBLUP method than other methods could be because genomic information may explain Mendelian sampling error that pedigree information cannot detect. Bias can cause reducing accuracy of estimated breeding value (EBV) for selected animals. Regression coefficient between true breeding value (TBV) and GBLUP EBV, PBLUP EBV, and PI EBV were 0.78, 0.625, and 0.35, respectively for CWT. This showed that genomic EBV (GEBV) is less biased than PBLUP and PI EBV in this study. In addition, number of effective chromosome segments (Me) statistic that indicates the independent loci is one of the important factors affecting the accuracy of BLUP. The correlation between Me and the accuracy of GBLUP is related to the genetic relationship between reference and test population. The correlations between Me and accuracy were -0.74 in CWT, -0.75 in EMA, -0.73 in MS, and -0.75 in BF, which were strongly negative. These results proved that the estimation of genetic ability using genomic data is the most effective, and the smaller the Me, the higher the accuracy of EBV.

Balanced Accuracy and Confidence Probability of Interval Estimates

  • Liu, Yi-Hsin;Stan Lipovetsky;Betty L. Hickman
    • International Journal of Reliability and Applications
    • /
    • v.3 no.1
    • /
    • pp.37-50
    • /
    • 2002
  • Simultaneous estimation of accuracy and probability corresponding to a prediction interval is considered in this study. Traditional application of confidence interval forecasting consists in evaluation of interval limits for a given significance level. The wider is this interval, the higher is probability and the lower is the forecast precision. In this paper a measure of stochastic forecast accuracy is introduced, and a procedure for balanced estimation of both the predicting accuracy and confidence probability is elaborated. Solution can be obtained in an optimizing approach. Suggested method is applied to constructing confidence intervals for parameters estimated by normal and t distributions

  • PDF