• Title/Summary/Keyword: accuracy design

Search Result 4,544, Processing Time 0.036 seconds

Design and Performance Measurement of a Genetic Algorithm-based Group Classification Method : The Case of Bond Rating (유전 알고리듬 기반 집단분류기법의 개발과 성과평가 : 채권등급 평가를 중심으로)

  • Min, Jae-H.;Jeong, Chul-Woo
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.32 no.1
    • /
    • pp.61-75
    • /
    • 2007
  • The purpose of this paper is to develop a new group classification method based on genetic algorithm and to com-pare its prediction performance with those of existing methods in the area of bond rating. To serve this purpose, we conduct various experiments with pilot and general models. Specifically, we first conduct experiments employing two pilot models : the one searching for the cluster center of each group and the other one searching for both the cluster center and the attribute weights in order to maximize classification accuracy. The results from the pilot experiments show that the performance of the latter in terms of classification accuracy ratio is higher than that of the former which provides the rationale of searching for both the cluster center of each group and the attribute weights to improve classification accuracy. With this lesson in mind, we design two generalized models employing genetic algorithm : the one is to maximize the classification accuracy and the other one is to minimize the total misclassification cost. We compare the performance of these two models with those of existing statistical and artificial intelligent models such as MDA, ANN, and Decision Tree, and conclude that the genetic algorithm-based group classification method that we propose in this paper significantly outperforms the other methods in respect of classification accuracy ratio as well as misclassification cost.

A Miniaturized Catadioptric Laser-Irradiation-Precision Test System

  • Liu, Huan;Sun, Hao;Wang, Chunyan
    • Current Optics and Photonics
    • /
    • v.5 no.2
    • /
    • pp.164-172
    • /
    • 2021
  • In this paper a catadioptric laser-irradiation-precision test system is designed, to achieve a high-precision laser-irradiation-accuracy test. In this system, we adopt the method of imaging the entire target surface at a certain distance to realize the measurement of laser-irradiation precision. The method possesses the advantages of convenient operation, high sensitivity, and good stability. To meet the test accuracy requirement of 100 mm/km (0.01%), the coma, field curvature, and distortion over the entire field of view should be eliminated from the optical system's design. Taking into account the whole length of the tube and the influence of stray light on the structure type, a catadioptric system with a hood added near the primary imaging surface is designed. After optimization using the ZEMAX software, the modulation transfer function (MTF) of the designed optical system is 0.6 at 30 lp/mm, the full-field-of-view distortion is better than 0.18%, and the energy concentration in the 10-㎛-radius surrounding circle reaches about 90%. The illumination-accuracy test results show that the measurement accuracy of the radiation hit rate is better than 50 mm when the test distance is 1 km, which is better than the requirement of 100 mm/km for the laser-irradiation-accuracy test.

Research on Pattern Elements and Colors in Apparel Design through Fractal Theory

  • Dan Li;Chengjun Yuan
    • Journal of Information Processing Systems
    • /
    • v.20 no.3
    • /
    • pp.409-417
    • /
    • 2024
  • Excellent apparel design can increase market competitiveness. This article briefly introduced the theory of fractals and its application in the field of apparel design. The convolutional neural network (CNN) algorithm was used to assist in the evaluation of apparel designs. In the case analysis, the accuracy of the evaluation was validated by comparing the CNN algorithm with two other intelligent algorithms, support vector machine (SVM) and back propagation (BP). The evaluation of the proposed design showed that compared with SVM and BP algorithms, the CNN algorithm had higher accuracy in evaluating apparel designs. The evaluation result of the proposed apparel design not only further verifies the effectiveness of the CNN algorithm, but also demonstrates that the theory of fractals can be effectively applied in apparel design to provide more innovative designs.

The conceptual design of the x y $\theta$ fine stage and its optimal design to obtain fast response in lithography system.

  • Kim, Dong-Min;Kim, Ki-Hyun;Lee, Sung-Q.;Gweon, Dae-Gab
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.37.3-37
    • /
    • 2001
  • The quality of a precision product, in genera, relies on the accuracy and precision of its manufacturing and inspection process. In many cases, the level of precision in the manufacturing and inspection system is also dependent on the positioning capability of tool with respect to the workpiece in the process. Recently the positioning accuracy level employed for some of precision product has reached the level of submicron and long range of motion is required. For example, for 1GDRM lithography, 20nm accuracy and 300nm stroke needs. This paper refers to the lithography stage especially fine stage. In this study, for long stroke and high accuracy, the dual servo system is proposed. For the coarse actuator, LDM(Linear DC Noter) is used and for fine or VCM is used ...

  • PDF

Development of Algorithms for Accuracy Improvement in Transfer-Type Variable Lamination Manufacturing Process using Expandable Polystrene Foam (VLM-ST공정의 정밀도 향상을 위한 알고리즘 개발)

  • 최홍석;이상호;안동규;양동열;박두섭;채희창
    • Korean Journal of Computational Design and Engineering
    • /
    • v.8 no.4
    • /
    • pp.212-221
    • /
    • 2003
  • In order to reduce the lead-time and cost, the technology of rapid prototyping (RP) has been widely used. A new rapid prototyping process, transfer-type variable lamination manufacturing process by using expandable polystyrene foam (VLM-ST), has been developed to reduce building time, apparatus cost and additional post-processing. At the same time, VLM Slicer, the CAD/CAM software for VLM-ST has been developed. In this study, algorithms for accuracy improvement of VLM-ST, which include offset and overrun of a cutting path and generation of a reference shape are developed. Offset algorithm improves cutting accuracy, overrun algorithm enables the VLM-ST process to make a shape of sharp edge and reference shape generation algorithm adds additional shape which makes off-line lamination easier. In addition, proposed algorithms are applied to practical CAD models for verification.

A Study on the High-Accuracy Power Meter and Reliability Verification Plan (고정밀 전력미터의 개발과 신뢰성 확보 방안에 대한 연구)

  • Lee, Sanghun;LEE, Changhwa
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.7
    • /
    • pp.1046-1053
    • /
    • 2017
  • We propose a design method of high accuracy power measuring device and the method of securing the reliability of the measured data. As a design method for the development of the high accuracy power measuring device, the circuit was made by reflecting the high accuracy power measuring ICs and the CT (Current Transformer). To ensure the reliability of the power meter, we requested to the watt-hour meter certified testing organization to measure the error rate, and the error rate of active power based on the "Wattmeter Technical Standard(Revision notify 2014-283)" was measure, and the error rate was confirmed to be less than 0.1%.

A Study on the Antenna Front Plate Design for the Improvement of DF Accuracy (방향탐지 정확도 개선을 위한 안테나 전면판 설계에 관한 연구)

  • Kim, In-Seon;Shin, Im-Seob
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.669-675
    • /
    • 2011
  • In this paper, we present the AFP(antenna front plate)s which were designed to reduce the reflection for the sake of the improvement of DF(direction finding) accuracy. The AFP consists of front plate, absorber and radome. The AFPs were optimized respectively by real test and we performed the DF test using our AFPs in laboratory. The DF test shows that the DF accuracy is about 2 times better than the requirement capability. Then, the DF field test was executed using the AFPs, which were installed in helicopter in consideration of the reflection by platform. The result of the DF field test is superior to the requirement capability also, which shows the validity of our design method.

A Study on Unifying Topology and Numerical Accuracy in Geometric Modeling: Surface to Surface Intersections (토폴로지와 수치적 정확도를 통합한 기하모델링에 관한 연구: 곡면간 교차선)

  • Ko, Kwang-Hee
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.5
    • /
    • pp.344-353
    • /
    • 2007
  • In this paper, we address the problem of robust geometric modeling with emphasis on surface to surface intersections. We consider the topology and the numerical accuracy of an intersection curve to find the best approximation to the exact one. First, we perform the topological configuration of intersection curves, from which we determine the starting and ending points of each monotonic intersection curve segment along with its topological structure. Next, we trace each monotonic intersection curve segment using a validated ODE solver, which provides the error bounds containing the topological structure of the intersection curve and enclosing the exact root without a numerical instance. Then, we choose one approximation curve and adjust it within the bounds by minimizing an objective function measuring the errors from the exact one. Using this process, we can obtain an approximate intersection curve which considers the topology and the numerical accuracy for robust geometric modeling.

The Design of Path Length Controller in Ring Laser Gyroscope for Attitude Control in the LEO satellite (위성 자세제어 자이로 센서 피에조 구동기 설계)

  • Kim, Eui-Chan
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.341-343
    • /
    • 2009
  • The Ring Laser Gyroscope makes use of the Sagnac effect within a resonant ring cavity of a He-Ne laser and has more accuracy than the other gyros. The Low Earth Orbit satellite for observatory use require the high accuracy Gyro to control and determine the altitude because of the need of payload pointing accuracy. In this paper, The theory of the Path Length Control is explained. The electrical design of Path Length Controller Is described. The Design for Path Length Controller is composed of the demodulator, integrator, phase shifter, high voltage amplifier. We apply the circuit to 28cm square ring laser gyro and get the test results.

  • PDF

The Design of Path Length Controller in Ring Laser Gyroscope for Attitude Control in the LEO satellite (저궤도 위성 자세제어를 위한 자이로의 광경로 제어기 설계)

  • Kim, Eui-Chan;Lee, Heung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.2
    • /
    • pp.256-260
    • /
    • 2008
  • The Ring Laser Gyro makes use of the Sagnac effect within a resonant ring cavity of A He-Ne laser and has more accuracy than the other Gyros. The Low Earth Orbit satellite for observatory use require the high accuracy Gyro to control and determine the altitude because of the need of payload pointing accuracy. In this paper, The theory of the Path Length Control is explained. The electrical design of Path Length Controller is described. The Design for Path Length Controller is composed of the demodulator, Integrator, Phase shifter, High Voltage Amplifier. We apply the circuit to 28cm square ring laser gyro and get the test results.