• Title/Summary/Keyword: accident prediction models

Search Result 100, Processing Time 0.025 seconds

Investigating the Impact of Establishing Integrated Management Systems on Accidents and Safety Performance Indices: A Case Study

  • Laal, Fereydoon;Pouyakian, Mostafa;Madvari, Rohollah F.;Khoshakhlagh, Amir H.;Halvani, Gholam H.
    • Safety and Health at Work
    • /
    • v.10 no.1
    • /
    • pp.54-60
    • /
    • 2019
  • Background: Increasing the establishment of integrated management systems (IMSs) is done with the purpose of leaving traditional management methods and replacing them with modern management methods. Thus, the present study sought to analyze the events and investigate the impact of IMS on health and safety performance indices in an Iranian combined cycle power plants. Methods: This case study was conducted in 2012 in all units of the Yazd Combined Cycle Power Plant on accident victims before and after the implementation of IMS. For data analysis and prediction of indices after the implementation of IMS, descriptive statistics and Kolmogorov-Smirnov test, Chi-square, linear regression, and Cubic tests were conducted using SPSS software. Results: The number of people employed in the power plant in an 8-year period (2004-2011) was 1,189, and 287 cases of work-related accidents were recorded. The highest accident frequency rate and accident severity rate were in 2004 (32.65) and 2008 (209), respectively. Safe T-score reached to below -3 during 2010-2011. In addition, given the regression results, the relation between all predictor variables with outcomes was significant (p < 0.05), except for the variable $X^1$ belonging to the accident severity rate index. Conclusion: The implementation of safety programs especially that of IMS and its annual audits has had a significant impact on reducing accident indices and improving safety within the study period. Accordingly, health and safety management systems are appropriate tools for reducing accident rate, and the use of regression models and accident indices is also a suitable way for monitoring safety performance.

Ex-vessel Steam Explosion Analysis for Pressurized Water Reactor and Boiling Water Reactor

  • Leskovar, Matjaz;Ursic, Mitja
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.72-86
    • /
    • 2016
  • A steam explosion may occur during a severe accident, when the molten core comes into contact with water. The pressurized water reactor and boiling water reactor ex-vessel steam explosion study, which was carried out with the multicomponent three-dimensional Eulerian fuel-coolant interaction code under the conditions of the Organisation for Economic Co-operation and Development (OECD) Steam Explosion Resolution for Nuclear Applications project reactor exercise, is presented and discussed. In reactor calculations, the largest uncertainties in the prediction of the steam explosion strength are expected to be caused by the large uncertainties related to the jet breakup. To obtain some insight into these uncertainties, premixing simulations were performed with both available jet breakup models, i.e., the global and the local models. The simulations revealed that weaker explosions are predicted by the local model, compared to the global model, due to the predicted smaller melt droplet size, resulting in increased melt solidification and increased void buildup, both reducing the explosion strength. Despite the lower active melt mass predicted for the pressurized water reactor case, pressure loads at the cavity walls are typically higher than that for the boiling water reactor case. This is because of the significantly larger boiling water reactor cavity, where the explosion pressure wave originating from the premixture in the center of the cavity has already been significantly weakened on reaching the distant cavity wall.

Electrical fire prediction model study using machine learning (기계학습을 통한 전기화재 예측모델 연구)

  • Ko, Kyeong-Seok;Hwang, Dong-Hyun;Park, Sang-June;Moon, Ga-Gyeong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.6
    • /
    • pp.703-710
    • /
    • 2018
  • Although various efforts have been made every year to reduce electric fire accidents such as accident analysis and inspection for electric fire accidents, there is no effective countermeasure due to lack of effective decision support system and existing cumulative data utilization method. The purpose of this study is to develop an algorithm for predicting electric fire based on data such as electric safety inspection data, electric fire accident information, building information, and weather information. Through the pre-processing of collected data for each institution such as Korea Electrical Safety Corporation, Meteorological Administration, Ministry of Land, Infrastructure, and Transport, Fire Defense Headquarters, convergence, analysis, modeling, and verification process, we derive the factors influencing electric fire and develop prediction models. The results showed insulation resistance value, humidity, wind speed, building deterioration(aging), floor space ratio, building coverage ratio and building use. The accuracy of prediction model using random forest algorithm was 74.7%.

A Basic Study on Quantification Model Development of Human Accidents based on the Insurance Claim Payout of Construction Site (건설공사보험 사례를 활용한 건설현장 인명사고 정량화 모델 개발 기초연구)

  • Ha, Sun-Geun;Kim, Tae-Hui;Kim, Ji-Myong;Jang, Jun-Ho;Son, Ki-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.195-196
    • /
    • 2017
  • The number of human accidents in the construction industry is increasing every year, and it constitute the highest percentage among industry. This means that activities performed to prevent safety accidents in the country are not efficient to reduce the rate of accidents in the construction industry. In order to solve this issue, research has been conducted from various perspectives. But, research regarding to quantification model of human accidents is insufficient. the objective of this study is to conduct a basic study on quantification model development of human accidents. To achieve the objective, first, Cause of accident is defined the through literature review. Second, a basic statistic analysis is conducted to determine the characteristics of the accident causes. Third, the analysis is conducted after dividing into four categories : accumulate rate, season, total construction cost, and location. In the future, this study can be used as a reference for developing the safety management checklist for safety management in construction site and development of prediction models of human accident.

  • PDF

Limiting conditions prediction using machine learning for loss of condenser vacuum event

  • Dong-Hun Shin;Moon-Ghu Park;Hae-Yong Jeong;Jae-Yong Lee;Jung-Uk Sohn;Do-Yeon Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4607-4616
    • /
    • 2023
  • We implement machine learning regression models to predict peak pressures of primary and secondary systems, a major safety concern in Loss Of Condenser Vacuum (LOCV) accident. We selected the Multi-dimensional Analysis of Reactor Safety-KINS standard (MARS-KS) code to analyze the LOCV accident, and the reference plant is the Korean Optimized Power Reactor 1000MWe (OPR1000). eXtreme Gradient Boosting (XGBoost) is selected as a machine learning tool. The MARS-KS code is used to generate LOCV accident data and the data is applied to train the machine learning model. Hyperparameter optimization is performed using a simulated annealing. The randomly generated combination of initial conditions within the operating range is put into the input of the XGBoost model to predict the peak pressure. These initial conditions that cause peak pressure with MARS-KS generate the results. After such a process, the error between the predicted value and the code output is calculated. Uncertainty about the machine learning model is also calculated to verify the model accuracy. The machine learning model presented in this paper successfully identifies a combination of initial conditions that produce a more conservative peak pressure than the values calculated with existing methodologies.

The effect of road weather factors on traffic accident - Focused on Busan area - (도로위의 기상요인이 교통사고에 미치는 영향 - 부산지역을 중심으로 -)

  • Lee, Kyeongjun;Jung, Imgook;Noh, Yunhwan;Yoon, Sanggyeong;Cho, Youngseuk
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.3
    • /
    • pp.661-668
    • /
    • 2015
  • Them traffic accidents have been increased every year due to increasing of vehicles numbers as well as the gravitation of the population. The carelessness of drivers, many road weather factors have a great influence on the traffic accidents. Especially, the number of traffic accident is governed by precipitation, visibility, humidity, cloud amounts and temperature. The purpose of this paper is to analyse the effect of road weather factors on traffic accident. We use the data of traffic accident, AWS weather factors (precipitation, existence of rainfall, temperature, wind speed), time zone and day of the week in 2013. We did statistical analysis using logistic regression analysis and decision tree analysis. These prediction models may be used to predict the traffic accident according to the weather condition.

Development of Traffic Accident frequency Prediction Model by Administrative zone - A Case of Seoul (소규모 지역단위 교통사고예측모형 개발 - 서울시 행정동을 대상으로)

  • Hong, Ji Yeon;Lee, Soo Beom;Kim, Jeong Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.6
    • /
    • pp.1297-1308
    • /
    • 2015
  • In Korea, the local traffic safety master plan has been established and implemented according to the Traffic Safety Act. Each local government is required to establish a customized traffic safety policy and share roles for improvement of traffic safety and this means that local governments lead and promote effective local traffic safety policies fit for local circumstances in substance. For implementing efficient traffic safety policies, which accord with many-sided characteristics of local governments, the prediction of community-based traffic accidents, which considers local characteristics and the analysis of accident influence factors must be preceded, but there is a shortage of research on this. Most of existing studies on the community-based traffic accident prediction used social and economic variables related to accident exposure environments in countries or cities due to the limit of collected data. For this reason, there was a limit in applying the developed models to the actual reduction of traffic accidents. Thus, this study developed a local traffic accident prediction model, based on smaller regional units, administrative districts, which were not omitted in existing studies and suggested a method to reflect traffic safety facility and policy variables that traffic safety policy makers can control, in addition to social and economic variables related to accident exposure environments, in the model and apply them to the development of local traffic safety policies. The model development result showed that in terms of accident exposure environments, road extension, gross floor area of buildings, the ratio of bus lane installation and the number of crossroads and crosswalks had a positive relation with accidents and the ratio of crosswalk sign installation, the number of speed bumps and the results of clampdown by police force had a negative relation with accidents.

Selection of Important Variables in the Classification Model for Successful Flight Training (조종사 비행훈련 성패예측모형 구축을 위한 중요변수 선정)

  • Lee, Sang-Heon;Lee, Sun-Doo
    • IE interfaces
    • /
    • v.20 no.1
    • /
    • pp.41-48
    • /
    • 2007
  • The main purpose of this paper is cost reduction in absurd pilot positive expense and human accident prevention which is caused by in the pilot selection process. We use classification models such as logistic regression, decision tree, and neural network based on aptitude test results of 505 ROK Air Force applicants in 2001~2004. First, we determine the reliability and propriety against the aptitude test system which has been improved. Based on this conference flight simulator test item was compared to the new aptitude test item in order to make additional yes or no decision from different models in terms of classification accuracy, ROC and Response Threshold side. Decision tree was selected as the most efficient for each sequential flight training result and the last flight training results predict excellent. Therefore, we propose that the standard of pilot selection be adopted by the decision tree and it presents in the aptitude test item which is new a conference flight simulator test.

Mechanisms, Experimental Results, Empirical Correlations and Analytic Models of Beat Transfer in Containment Building Following a LOCA (냉각재 상실 사고시 격납 용기내에 있어서의 열전달에 관한 기구, 실험결과, 선험 관계식 및 해석적 모형들에 관한 고찰)

  • Jong Ho Choi;Soon Heung Chang
    • Nuclear Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.123-134
    • /
    • 1983
  • Estimates of the rate of heat removal from the containment atmosphere following a loss of colant accident (LOCA) are important to the prediction of containment peak pressure and temperature which are essential parameters in designing the containment building. An overall survey and discussion of mechanisms, experimental results, empirical correlations and analytical models that are relevant to the heat transfer inside the containment have been made. As a result of this review, the current state of the knowledge about tile containment heat transfer can be understood and it is known that more investigations are needed to avoid the misuse of various correlations.

  • PDF

Model for Predicting Accidents at a Unsignailzed Intersections in a Community Road (생활도로내 비신호교차로 사고예측 모형 개발)

  • Chang, Iljoon;Kim, Jang Wook;Lee, Hyeong Rok;Lee, Soo Beom
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3D
    • /
    • pp.343-353
    • /
    • 2011
  • The unsignalized intersections in a community road in the city of Seoul have 3,753 traffic accidents(9%) of total 41,702 cases in 2008, not high in the occurrence rate of traffic accidents, but seem to have a quite high potential of accidents due to the unreasonable and insufficient operation of systems and facilities in the part of traffic foundations. In particular, the un-signalized intersections in a community road have an insufficient measure for safety as compared to the crossroads with signals, and there are few analysis of traffic accidents and domestic researches on the model of affecting factors. Our country also has no concept of passing priority in operating a crossroad without signals, differently from foreign countries, so the researches and safety measures for improving the safety of a crossroad without signals in a community road are urgent. Therefore, This study set out to analyze the road conditions, traffic conditions, and traffic environment conditions on unsignalized intersection, to identify the elements that would impose obstructions in safety, and develop a traffic accident prediction model to evaluate the safety of an unsignalized intersection using the correlation between the elements and an accident. In addition, the focus was made on suggesting appropriate traffic safety policies by dealing with the danger elements in advance and on enhancing the safety on intersection in developing a traffic accident prediction model for an unsignalized intersection.