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A B S T R A C T   

We implement machine learning regression models to predict peak pressures of primary and secondary systems, 
a major safety concern in Loss Of Condenser Vacuum (LOCV) accident. We selected the Multi-dimensional 
Analysis of Reactor Safety-KINS standard (MARS-KS) code to analyze the LOCV accident, and the reference 
plant is the Korean Optimized Power Reactor 1000MWe (OPR1000). eXtreme Gradient Boosting (XGBoost) is 
selected as a machine learning tool. The MARS-KS code is used to generate LOCV accident data and the data is 
applied to train the machine learning model. Hyperparameter optimization is performed using a simulated 
annealing. The randomly generated combination of initial conditions within the operating range is put into the 
input of the XGBoost model to predict the peak pressure. These initial conditions that cause peak pressure with 
MARS-KS generate the results. After such a process, the error between the predicted value and the code output is 
calculated. Uncertainty about the machine learning model is also calculated to verify the model accuracy. The 
machine learning model presented in this paper successfully identifies a combination of initial conditions that 
produce a more conservative peak pressure than the values calculated with existing methodologies.   

1. Introduction 

The construction and operation of nuclear power plants require 
demonstrating that the design has sufficient safety margins under 
various operating conditions and unlikely but possible accident condi-
tions. The safety margin of a nuclear power plant is defined as the dif-
ference or the ratio between the value of the actual power plant and the 
limit value at which the related system or parts faulted when the set-
point exceeds a specific value. Therefore, if a power plant operates while 
maintaining a sufficient safety margin, it is guaranteed to be safe despite 
its operating condition. 

Fig. 1 is a general concept of safety margin suggested by the Inter-
national Atomic Energy Agency (IAEA) [1]. Generally, the safety margin 
is set to the Departure from Nucleate Boiling Ratio (DNBR) or the nu-
clear fuel and cladding temperatures that confirm the barrier integrity 
against radioactive material leakage. Furthermore, it may be set to the 

pressure or stress required to maintain the integrity of the reactor 
coolant system, the temperature and pressure of the containment sys-
tem, and the amount of radiation affecting the environment. Since we 
can evaluate the limitation on numerous factors threatening safety in 
several ways, the safety margin could be understood as the difference 
between the legally defined acceptance criteria and the actual state 
value of the nuclear power plant. 

Power plant designers should perform safety analysis and measure 
safety margin using safety analysis codes to ensure that nuclear power 
plants can operate with sufficient safety margin when an accident oc-
curs. Several safety analysis methodologies can be selectively used to 
confirm this depending on the type of the computer code, assumption 
about system availability, assumption of initial and boundary condi-
tions. Table 1 summarizes various safety analysis methodologies speci-
fied in the IAEA safety standards. This study uses a combined method 
using the best-estimate code and the application of conservative initial 
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conditions and boundary conditions. This method is widely used to 
analyze design basis accidents and anticipated operational occurrences 
for licensing calculations [1,2]. 

In such a case, the main concern is conservative accident results and 
a combination of the initial conditions. To ideally verify the safety 
margin for an accident using the combined method, various input con-
ditions within the Limiting Conditions for Operation (LCO) range must 
be configured. After that, the analysis is performed for each input con-
dition to derive conservative results and prove that it is under the legal 

acceptance criteria. However, this method requires a lot of time and 
effort because it requires analysis of numerous cases. Therefore, we 
performed safety analysis by composing initial conditions with a com-
bination of maximum, minimum, and nominal LCO ranges in the Korea 
Non-LOCA Analysis Package (KNAP) methodology currently applicable 
to safety analysis in Korea. The validity of this method, based on 
numerous sensitivity analyses accomplished by experts, has been 
recognized enough to be used for current licensing [3]. Yet, because this 
method performs safety analysis only with a limited combination of 
initial conditions, there may be initial conditions that cause conservative 
results that have not been discovered. Accordingly, it is necessary to 
confirm the existence of an initial condition combination that derives 
conservative results beyond the combination suggested in the existing 
methodology. 

Machine learning [4,5], one of the data mining methodologies, is a 
research area that mixes statistics, artificial intelligence, and computer 
science. It performs well if an accurate understanding of the problems to 
be solved and refined data are involved [6]. eXtreme Gradient Boosting 
(XGBoost), chosen among the machine learning techniques, is an 
ensemble algorithm based on Gradient Boosting Decision Tree (GBDT) 

Fig. 1. Concept of safety margins [1].  

Table 1 
Classification of safety analysis methodology [2].  

Option Computer 
code 

Availability of 
systems 

Initial and boundary 
conditions 

Conservative Conservative Conservative Conservative 
Combined Best estimate Conservative Conservative 
Best estimate Best estimate Conservative Realistic + Uncertainty 
Risk 

informed 
Best estimate Probabilistic Realistic + Uncertainty  

Fig. 2. Basic concept of XGBoost [8].  
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[7]. Fig. 2 shows the principle of XGBoost. In Fig. 2, x and y denote 
independent and target variables, respectively, and fk denotes the result 
of the kth tree. XGBoost is an interactive decision tree algorithm. All 
trees take the results from the previous tree and modify the weights to 
reduce the residual [8]. XGBoost is one of the most frequently used al-
gorithms, showing good training and high prediction performance [9]. 
This technology can solve the existing time-consuming problem, such as 
parallel processing, and has good scalability as an open-source tech-
nology. In addition, it supports regularization to prevent data overfitting 
and can use the desired objective function [10]. Because of these ad-
vantages, previous studies using XGBoost have also been conducted in 
the nuclear field [11–13]. However, no previous study on the XGBoost 
model predicts conservative accident analysis values for safety margin 
verification. 

We implement an XGBoost-based regression model that predicts 
conservative results for nuclear power plant accident analyses through 
various combinations of initial conditions. Additionally, the model- 
predicted value undergoes validation through a safety analysis code to 
ensure its accuracy. Furthermore, we also conducted the model uncer-
tainty analysis. 

2. Dataset 

We analyzed the Loss Of Condenser Vacuum (LOCV) accident dataset 

with the MARS-KS code [14] for OPR1000. MARS-KS is the safety 
analysis code used for data generation that is actively used for regulation 
in Korea. OPR1000 is the reference power plant. LOCV is caused by the 
failure of the circulating water system that supplies coolant or by the 
failure of the main condenser evacuation system. Heat removal from the 
primary system to the secondary system is rapidly reduced by causing a 
rapid interruption of the steam flow to the turbine and feed water flow to 
the steam generator. Therefore, the peak pressures in the primary and 
secondary systems are significant safety concerns [15,16]. 

When analyzing LOCV, selecting the appropriate initial condition 
variables and sampling range of the accident is necessary. The variables 
and ranges of the initial conditions necessary for analyzing LOCV are 
selected with KNAP. These variables are selected because they influence 
LOCV most from the results of many sensitivity analyses, and we used 
these variables as they are. KNAP methodology generates initial condi-
tions by combining maximum, minimum, and nominal values within the 
LCO range. On the other hand, this study generates accident initial 
condition data based on the indirect sampling method presented in 
Ref. [17]. 

Control variables that dominantly affect the input variables consti-
tuting the initial conditions are selected for indirect sampling. After the 
selection, we adjusted the control variable within the range that does not 
affect power plant behavior abnormally to generate a combination of 
various initial conditions within the operating range. This method can 
only generate data in a narrower range than the existing LCO range. For 
this reason, it is difficult to apply this method to the current licensing 
calculation, and it is necessary to study to produce data up to the LCO 
range by selecting additional control variables and performing sensi-
tivity analysis in the future. Because this methodology is suitable for 
generating a significant amount of data by automatically creating a 
steady state for various initial conditions, it has the advantage of easily 
obtaining the numerous data required for machine learning. In other 
words, creating one input file valid for a steady state and changing the 
control variables only to generate another data set requires less effort 
than the existing methodology that creates various input files. We 
generated 60,000 data using the method suggested in Ref. [17]. Table 2 

Table 2 
Initial condition range for LOCV.  

Initial conditions LCO Analysis range in the present 
method 

Reactor coolant flow 
rate, lbm/s 

32,065–39,153 32,869–39,128 

Pressurizer pressure, 
MPa (psia) 

13.79–16.03 
(2000–2325) 

15.18–15.68 (2202–2275) 

Pressurizer level, % 21.9–60 37.7–53.4 
Steam generator level, % 

WR 
35–98.2 45.3–89.1  

Fig. 3. Schematic of entire research process.  
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compares the LCO and analysis ranges used in this paper. The initial 
conditions we select are the same as those selected by KNAP, and it has 
been shown in Ref. [17] that these variables are independent. The 
specification of the reference plant implemented to generate these data 
is as used in Ref. [17]. 

3. Methodology 

Fig. 3 presents a schematic that illustrates the overall contents of the 
research. The symbol X represents the initial condition, while Y denotes 
the peak pressure. We use asterisks to distinguish between data with 
different identities. For instance, although the symbols are indistin-
guishable, Y and Y* have different identities. The superscript number in 
the box indicates the order of progress. We divide the data to learn the 
model, which is then trained, and the hyperparameters are calibrated to 
obtain optimal results. We created two models to predict the primary 
and secondary peak pressures. We use the XGBoost model to generate 
conservative peak pressure prediction values. In section 4, we calculate 
the peak pressures using the safety analysis code and compare the 
calculated value with the value predicted by the model using the initial 
conditions of the conservative value. Additionally, although it is not 
shown in the schematic, we perform an uncertainty analysis of the re-
sults. A detailed explanation of this process follows. 

In general, the more training data, the better it is to improve the 
model’s prediction accuracy [18]. Sufficient data composed of various 
combinations should be prepared to understand the inherent correlation 
in the data. It is effective in solving problems such as overfitting [19]. 
XGBoost is an algorithm that uses decision trees in an interactive 
manner, where the output of each tree is used to adjust the weights in the 
direction of minimizing the residual error. This behavior easily leads to 
overfitting, where the model tries to fit the data too closely. If the model 
is overfitting, the accuracy of the model drops as new data comes in 
because it is trained too accurately on the training data. Therefore, when 
using this model, it is important to prepare many training data or tune 
the hyperparameters appropriately to avoid overfitting. 

Because it often takes significant time and effort to produce data, 
producing sufficient data to solve a given problem and using it only for 
training is expected. The adequacy of the data can be determined by 

observing the learning curve, regardless of whether or not enough data 
has been obtained [20]. The learning curve is a graph showing how the 
performance of the model for training data and validation data changes 
according to the amount of training data. Therefore, before calibrating 
hyperparameters, we divide 60,000 data into training, validation, and 
test data in a 6:2:2 ratio to generate the learning curves for the primary 
and secondary regression models. The x-axis of the learning curve shown 
in Fig. 4 is the size of the training dataset, and the y-axis is the coefficient 
of determination (R2 score). The evaluation score is mainly used as a 
coefficient of determination because it is possible to see the suitability of 
the regression model for data intuitively. In both primary and secondary 
regression models, as the amount of training data increases, the training 
score decreases and the validation score increases; both scores show 
convergence to a value near 0.99. Although there is no absolute standard 
for this value, generally in engineering, it is considered meaningful if the 
coefficient of determination is more than 0.7 [21]. 

Both scores converge to a high value of around 1 compared to 0.7 
because we produce data with the safety analysis code and the high 
correlation among features inherent in the data. In addition, XGBoost is 
suitable for this data because it is vulnerable to noise due to the nature of 
the model that uses boosting algorithm to learn while reducing re-
siduals. Still, there is little noise in safety analysis data [22]. Per Fig. 4, 
when the data size is over 30,000, the train and validation scores are 
saturated due to the bias-variance tradeoff issue of the model. Therefore, 
42,000 training data, which is 60% of the 60,000 data we generated, is 
sufficient for training and optimization of the model. The remaining 
40% of the data is divided evenly for validation and testing. 

We further optimize hyperparameters of the XGBoost model in the 
superscript step 4 at Fig. 3 as follows. Hyperparameters are options that 
the user must manually set to determine the parameters of the model for 
improving performance. Optimizing hyperparameters can prevent the 
overfitting of the model in the learning process, maximizing the per-
formance of the model. Therefore, in implementing the model, hyper-
parameter optimization is a process that must be proceeded [23]. There 
are various methods for hyperparameter optimization, and Simulated 
Annealing (SA) [24] is one of them. SA is a method that simulates the 
quenching phenomenon, a physical process until the metal is sufficiently 
heated and then crystallized in a complete lattice state. This method 

Fig. 4. Learning curve of each model.  
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allows escaping the local minima by allowing the algorithm to choose 
what is not the best in its state when it is likely to converge to the local 
minimum rather than to find the global minimum. Therefore, we use SA 
not to make cost function converge to the local minimum but to find the 
global minimum during optimization. Equation (1) describes the cost 
function. y and ŷ represent the validation data and predicted data, 

respectively. The cost function is the sum of the mean absolute error 
(MAE) and variance of the error (Var) so that it is robust to outliers. The 
bias and variance of the model are evenly lowered. Fig. 5 is a 
pseudo-code that shows the process of optimizing the hyperparameters 
of the XGBoost model using SA.  

Cost = MAE (ε) + Var (ε),                                                               (1) 

Where ε =
⃒
⃒yi − ŷi

⃒
⃒. 

Table 3 summarizes the range of hyperparameters and optimized 
results by Simulated Annealing for each model predicting peak pressure 
on the primary and secondary models. We calibrated a total of 10 
hyperparameters, whereby we select n_estimators and max_depth as 
integers within a specified range, and the remaining hyperparameters 
are selected as real values. A detailed description of the hyperparameters 
is given in Ref. [25]. 

In the optimization results, the other hyperparameter values exhibit 
similarity. In contrast, the gamma and max_depth parameters, which 
influence the convergence of the machine learning model, are notice-
ably more prominent in the secondary model. Additionally, the learning 
rate employed in the machine learning model is substantially lower 
(0.069 or 0.055) than the default value of 0.3, which can lead to the 
problem of underfitting. SA’s optimization algorithm intricately de-
termines these parameter values, and the inherent opacity of machine 
learning, often referred to as a ‘black box,’ makes precise explanation 
challenging. However, as mentioned earlier, the XGBoost model we 
utilized tends to be susceptible to overfitting, suggesting that the model 
may have used a low learning rate. 

Fig. 6 shows the loss according to the optimized XGBoost model’s 
training times. The x-axis is the n_estimators, the number of rounds for 
boosting, and the y-axis is the loss defined as a root mean square error 
(RMSE). Boosting is repeated 2000 times for each model, and the figure 
shows only up to 120 times with a significant change in the loss. As the 
step progresses, the loss gradually decreases. The red line represents the 
final loss value after learning, with a value of 0.5209 for the primary 
regression model and 0.9196 for the secondary regression model. Before 
hyperparameter calibration, we have shown sufficient training data 
through the learning curve shown in Fig. 4, and we use a large number of 
iterations during training. The models learn to reduce the loss well, as 

Fig. 5. SA pseudo code applied to the XGBoost.  

Table 3 
Search range for hyperparameter and optimization result.  

Hyperparameters Search range Optimization results 

Primary model Secondary model 

n_estimators 1000–3000 2000 2000 
learning_rate 0.05–0.3 0.069 0.055 
colsample_bytree 0.6–1.0 0.8333 0.9925 
colsample_bylevel 0.6–1.0 0.9213 0.9210 
colsample_bynode 0.6–1.0 0.9949 0.8264 
max_depth 2–12 6 11 
subsample 0.5–1.0 0.8777 0.9429 
gamma 0 .0–15.0 0.1712 1.2756 
reg_alpha 0.0–100.0 9.0 14.0 
reg_lambda 0.0–100.0 1.5 7.5  

Fig. 6. Loss of the model according to the number of boosting.  
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shown in Fig. 6. These figures illustrate that underfitting does not occur 
due to the low learning rate we are concerned about. 

As mentioned above, the peak pressures of the primary and sec-
ondary systems are the major safety concern in LOCV. The power plant 
designers must prove that the peak pressure that may occur in the LOCV 
is within limit specified in the final safety analysis report. Therefore, it is 
important to find a conservative peak pressure through a combination of 
various initial conditions, and this value is obtained using the XGBoost 
regression model implemented above. First, a random input variable 
combination is created within the LCO range presented in Table 2. We 
sample each input variable using uniform, normal, and log-uniform 
distributions [17]. Then, the generated input variables are put into the 
regression model to obtain predicted values. The purpose of finding the 
conservative peak pressure is met through an iterative process. Since this 
process is a combination optimization problem, SA is used. Through 
many iterative processes, we select 100 initial conditions that cause 
conservative peak pressure for each prediction model, the primary and 
the secondary. 

4. Results and discussion 

Figs. 7 and 8 are 100 initial condition cases predicted by the primary 

and the secondary of XGBoost model, respectively. We compare these 
results with the conservative initial conditions presented by the KNAP 
methodology. The red line represents the range of data used for model 
learning, and the green line is the initial condition value suggested by 
KNAP. The data distribution of the reactor coolant flow rate and pres-
surizer level in Fig. 7 is concentrated on the red line at the top and 
contains green lines. Pressurizer pressure data is relatively widely 
distributed within the range of the red line. Compared to the green line, 
peak pressure may occur at various pressurizer pressures than the value 
suggested by KNAP. There is no green line in the steam generator water 
level data because the steam generator level presented by KNAP is 35%. 
The minimum value of the LCO range and the minimum range of the 
data we used for model learning is 45.3%. Nevertheless, the fact that the 
data distribution is concentrated on the red line at the bottom shows that 
the model predicts the low steam generator level in the range of learned 
data as a conservative initial condition value, indicating that it is 
consistent with the trend suggested by KNAP. Fig. 8 shows a similar 
pattern except for pressurizer pressure. In this case, the data is distrib-
uted around the red line at the bottom in the case of the pressurizer 
pressure. This phenomenon can be interpreted as follows: when the 
initial pressure is low, the reactor trip occurs later due to high pressure. 
This increases the amount of heat transferred from the primary to the 

Fig. 7. Conservative initial condition distribution predicted by the primary model.  
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secondary, resulting in an increase in the peak pressure on the secondary 
system. However, if the main steam safety valves open before the high 
pressurizer pressure trip, high initial pressurizer pressure could make 
the maximum reactor coolant system over-pressurization. Because of 
this complicated effect, the KNAP methodology takes a steady state 
pressurizer near the nominal value as an initial condition, which makes 
differences from our initial conditions. Table 4 compares the conserva-
tive initial condition values presented by KNAP with the initial condition 
results presented in this study. 

We predict 100 conservative peak pressures and the initial condi-
tions causing them with the XGBoost model and compare them to the 
results of KNAP. However, since this value is simply the predicted value 
of the machine learning model, it is necessary to verify it through 
comparison with the value calculated in the safety analysis code. Fig. 9 
compares the primary peak pressure predicted by the primary XGBoost 
model with the result calculated by MARS-KS code. The root mean 
square error between the predicted and code values is 0.7231 psi, and 
the largest difference between the two values is 1.6 psi, which appeared 
in the 33rd case. The highest peak pressure value is 2652.5 psia in the 
20th case, and the error is 0.8476 psi. Considering that the y-axis scale is 
near 2650 psia, the error size can indicate that the primary regression 
model is successfully predicted. Fig. 10 compares the secondary peak 
pressure predicted by the secondary XGBoost model with the result 
calculated by MARS-KS code. The root mean square error is 4.5612 psi, 
showing the maximum difference of 8.67 psi between the two values in 
the 56th case. The highest peak pressure value is 1358.7 psia in the 29th 
case, and the error, in this case, is 8.61 psi. The secondary regression 
model has a higher error than the primary regression model. This shows 
that the data used in learning is more suitable for describing the primary 
system than the secondary system. To improve the accuracy of the 
secondary model in the future, data related to the secondary system, 

Fig. 8. Conservative initial condition distribution predicted by the secondary model.  

Table 4 
Comparison of conservative input conditions for LOCV accidents.  

Initial input parameters KNAP MARS-KS 

Primary peak 
pressure 

Secondary peak 
pressure 

Reactor coolant flow, 
lbm/s 

39,153 39,103 38,111 

Pressurizer pressure, 
psia 

2260 2233 2205 

Pressurizer level, % 52.6 51 51.3 
Steam generator level, % 35 44 50  
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such as feed flow rate, could be added. 
We used Simulated Annealing for hyperparameter calibration. In 

addition to SA, various methods could be used for hyperparameter 
calibration, each with varying results. Therefore, we use Particle Swarm 
Optimization (PSO) technique and SA to calibrate the hyperparameters 
of XGBoost. PSO is an optimization algorithm created by imitating 
swarm objects and finding the optimal solution through self-learning 
[26]. We use a batch of particles called swarm, and these particles tra-
verse the search space to find the global minimum. Because the algo-
rithm is simple and easy to implement, it is widely used for function 
optimization and signal processing. Table 5 compares the performance 

of XGBoost model optimized by SA and PSO techniques. The primary 
and secondary model’s root mean squared errors show slightly better in 
SA than PSO, but the differences are very small. The highest peak 

Fig. 9. Results of primary peak pressure.  

Fig. 10. Results of secondary peak pressure.  

Table 5 
Comparison of performance of SA and PSO optimization techniques.  

System Primary Secondary 

Optimization technique SA PSO SA PSO 
Root mean squared error (psi) 0.7231 0.7261 4.5612 5.4696 
Highest peak pressure (psia) 2652.5 2652.4 1358.7 1357.8  
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pressure predicted by the model optimized with each technology shows 
a similar level of value. Therefore, there is no significant change of result 
according to the hyperparameter optimization method. 

Table 6 compares the primary and secondary peak pressures found 
through the method presented in this paper with the values derived from 
existing methodologies. The existing methodologies are the KNAP 
methodology based on Reactor TRANsient (RETRAN) code [27] and 
ABB Combustion Engineering (ABB-CE) methodology based on the 
CESEC-III code [3,28]. Although each methodology has a slight differ-
ence in assumptions and the uncertainty implied by the code, it can be a 
proper indicator of the result presented in our study compared to 
methods used in the licensing process. And it is recognized that LOCV 
can be adequately simulated. The highest primary peak pressure we 
obtained through our study is 2652.5 psia, located between the values 
calculated by the RETRAN code and the CESEC-III code. The secondary 
peak pressure presented in the study is 1358.7 psia, higher than the 
values suggested by the two codes. We also added the calculation results 
performed in Ref. [17] by applying the combined method with MARS-KS 
code. Since the detailed assumptions and codes are the same between 
reference [17] methodology and the suggested one in this paper, the 
calculation results can be directly compared. The primary and secondary 
peak pressures presented by us are higher than the previously calculated 
results of 2647 psia and 1343 psia, respectively. Because the values 
found by the machine learning model is closer to the acceptance criteria 
than the existing values, the safety margin may appear to have nar-
rowed. However, this has been the case due to the application of the 
machine learning methodology, but rather the discovery of previously 
undiscovered peak pressure. This methodology can avoid the cliff-edge 
effect and efficiently validate the safety margin by performing sensi-
tivity analyses with more combinations of initial conditions. These 

values show that it is possible to successfully find the more conservative 
peak pressure and the combination of initial conditions that induce it 
using machine learning techniques. 

We quantify the uncertainty of the machine learning model using 
tolerance intervals [29]. As the number of data used to obtain the 
tolerance intervals increases, the tolerance factor decreases, and this 
phenomenon reduces the uncertainty by narrowing the range of the 
tolerance intervals. Ideally, to obtain the uncertainty of the model, we 
produce many additional data by increasing the total amount of data. 
However, producing a large amount of additional data requires many 
resources, such as time, and obtaining additional data could be limited 
in some cases. In such cases, we can use Bartlett’s Test to obtain un-
certainty by using more data than the original data. Bartlett’s Test is a 
technique to validate whether different samples have the same variance 
or not. It is known that the performance is good when a sample follows a 
normal distribution and even non-normal data can be used when the 
number of samples is large [30]. Passing Bartlett’s Test means the 
relationship between the datasets is homogeneous, and thus data pool-
ing is possible. First, we create several sub-datasets by dividing the 
original data differently into train and test datasets. After performing a 
Bartlett’s Test on each train and test dataset, the data is pooled if the test 
is passed. Otherwise, a sub-dataset is created again to perform additional 
Bartlett’s Test. 

The data pooling process is performed 100 times, and the original 
data size is 60,000, so the total data size after the data pooling process is 
6 million. This dataset is used to obtain a 95%/95% upper tolerance 
limit [31]. The values predicted by the model are the peak pressures on 
the primary and secondary systems, so the upper tolerance limit could 
be considered for additional conservatism in the nuclear energy field. In 
calculating the tolerance limit, we use a one-sided tolerance limit 
because the minus error direction is not the conservative way. The 
distribution used in this case is noncentral t-distribution, mainly used in 
the one-sided tolerance limit calculation [32]. Fig. 11 shows the un-
certainties according to the amount of data for the primary and sec-
ondary systems. The x-axis implies the number of times the data is 
pooled. The y-axis is the upper tolerance limit. As we expect, the upper 
tolerance limit tends to decrease as the number of data increases in the 
figure. However, as data increases, the decline rate of uncertainty de-
creases, and uncertainty is saturated to a specific value. For the primary 
system, the 1st value is +1.1315, and the 100th value is +1.1156, just a 
1.4% decrease. For the secondary system, the 1st value is +1.5604, and 
the 100th value is +1.5247, a 2.3% decrease. 

This shows that although the amount of data affects the uncertainty, 
the effect is insignificant. Therefore, if the amount of data is guaranteed 
to some extent, uncertainty can be reasonably obtained within a specific 
range. Finally, we can say that the uncertainties of our machine learning 
models are +1.1315 and + 1.5604, respectively when interpreted from a 

Table 6 
Peak pressures in LOCV accident determined by different methodologies.  

Code Methodology Peak pressure in 
primary system 
(psia) 

Peak pressure in 
secondary system 
(psia) 

MARS-KS Combined 
approach +
Machine 
learninga 

2652.5 1358.7 

MARS-KS Combined 
approachb 

2647 1343 

RETRAN KNAP 2625 1322 
CESEC-III ABB-CE 2667 1343 
Acceptance 

criteria 
– 2750 1397  

a Methodology presented in this study. 
b Methodology presented in [16]. 

Fig. 11. Uncertainty of machine learning model.  
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conservative perspective. 

5. Conclusion 

In LOCV, the peak pressures of the primary and secondary systems 
are the main concern. Whether the plant can maintain a safe state during 
an accident is analyzed through safety analysis. In such cases, only the 
limited range is analyzed because the initial conditions are generated by 
a combination of minimum, maximum, and nominal within the LCO 
range. To overcome this limitation, in this study, we create a machine- 
learning model that predicts the peak pressure and the initial condi-
tions that induce it. We obtain data using MARS-KS code, train the 
machine learning model with this data, and perform hyperparameter 
tuning for optimization. Several simulations are performed with the 
machine learning model, and the peak pressures on the primary and 
secondary systems and the initial conditions that induce them are suc-
cessfully found. As a result of comparison with the calculated values by 
several safety analysis codes performed previously for the LOCV, the 
machine learning model predicts a more conservative peak pressure 
within a small error range. In addition, the uncertainty inherent in the 
machine learning model is also calculated and quantified. Also, the 
uncertainty change as the amount of data increases is generated. 

The model can perform a safety analysis by combining the initial 
conditions within the LCO range. This can find new combinations of 
initial conditions that generate peak pressures that existing methodol-
ogies have not discovered. This method can be used to evaluate the 
safety margin of a pressurized water reactor to confirm the validity of 
the conservative evaluation methodology presented by the plant 
designer as a regulative perspective. In addition to the LOCV accident, 
this methodology can be applied to various design basis accidents. 
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