• Title/Summary/Keyword: accident model

Search Result 1,563, Processing Time 0.024 seconds

A Study on Forecasting Traffic Safety Level by Traffic Accident Merging Index of Local Government (교통사고통합지수를 이용한 차년도 지방자치단체 교통안전수준 추정에 관한 연구)

  • Rim, Cheoulwoong;Cho, Jeongkwon
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.4
    • /
    • pp.108-114
    • /
    • 2012
  • Traffic Accident Merging Index(TAMI) is developed for TMACS(Traffic Safety Information Management Complex System). TAMI is calculated by combining 'Severity Index' and 'Frequency'. This paper suggest the accurate TAMI prediction model by time series forecasting. Preventing the traffic accident by accurately predicting it in advance can greatly improve road traffic safety. Searches the model which minimizes the error of 230 local self-governing groups. TAMI of 2007~2009 years data predicts TAMI of 2010. And TAMI of 2010 compares an actual index and a prediction index. And the error is minimized the constant where selects. Exponential Smoothing model was selected. And smoothing constant was decided with 0.59. TAMI Forecasting model provides traffic next year safety information of the local government.

Rear-end Accident Models of Rural Area Signalized Intersections in the Cases of Cheongju and Cheongwon (청주.청원 지방부 신호교차로의 후미추돌 사고모형)

  • Park, Byoung-Ho;In, Byung-Chul
    • International Journal of Highway Engineering
    • /
    • v.11 no.2
    • /
    • pp.151-158
    • /
    • 2009
  • This study deals with the rear-end collisions in the rural aiea. The objectives of this study are 1) to analyze the characteristics of rear-end accidents of signalized intersections, and 2) to develop the accident models for Cheongju-Cheongwon. In pursing the above, this study gives the particular attentions to comparing the characters of urban and rural area. In this study, the dependent variables are the number of accidents and value of EPDO(equivalent property damage only), and independent variables are the traffic volumes and geometric elements. The main results analyzed are the followings. First, the statistical analyses show that the Poisson accident model using the number of accident as a dependant variable are statistically significant and the negative binomial accident model using the value of EPDO are statistically significant. Second, the independent variables of Poisson model are analyzed to be the ratio of high-occupancy vehicles, total traffic volume and the sum of exit/entry, and those of negative binomial regression are the main road width, total traffic volume and the ratio of high-occupancy vehicles. Finally, the specific independent variables to the rural area are the main road width, the ratio of high occupancy vehicle, and the sum exit/entry.

  • PDF

Development of Human Indices to Determine Both Returning Point of Residents and Damage Restoration after the Chemical Accident (화학사고 후 주민복귀 및 피해복구 시점 결정을 위한 인체지표 개발)

  • Yang, JunYong;Heo, JeongMoo;Lee, HyunSeok;Lee, JunSang;Cho, YongSung;Kim, HoHyun;Park, SangHee
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.5
    • /
    • pp.588-598
    • /
    • 2020
  • Objectives: Human indices were developed to determine returning point of residents and damage restoration after the chemical accident Methods: To determine the returning point of residents after the chemical accident, a new concept, the standard man model was introduced as a human index, in which both H-code and its acute effects were main idea. To evaluate the applicability, a hydrogen fluoride leakage accident in Gumi was applied. The returning point were suggested as the conservative remission period of acute effects among relevant hazard effects and compared with actual returning point. The coverage of each age group were considered with reflecting average daily dose expected for actual residents. In addition, a relief-index as a social-scientific approach was reflected as well to apply the damage restoration Results: Actual returning point of residents in Gumi was 88 days; and that of standard man model suggested was 84 days. The expected amount of exposure at aged 12 or under was at least 2.35 times greater than that of this model, 40s, theoretically. However, their population ratio was less than 1%, so 99% of residents could be applied when the standard man model was applied. The relief-index was as an objective and quantitative methodology to apply the qualitative aspect. Conclusions: Although evaluated as a relatively positive result, there was a limitation such as the number of accident applied to the verification of standard man model. The relief index was also considered, but further research should be carried out to find threshold level for the relief.

A Study on Playback of Ship Collision Accident Using Free Running Model Test (자유항주 모형시험을 활용한 선박 충돌사고 재현에 관한 연구)

  • Hansol Park;Nam Sun Son;Chun Seon Pyo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.6
    • /
    • pp.450-459
    • /
    • 2023
  • According to Korea Maritime Safety Tribunal, there have been 14,100 maritime accidents from 2017 to 2021. Among those accidents, ship collision accidents have been up to 1,275 cases. But in the accidents relating to small ships like a fishing vessel, analyzing the causes of the accidents would depend on statements of the persons related because there is often no navigational data. But those statements can be incorrect and give rise to disagreements between them so that it causes conflicts with each other during the trial. So a replay system of ship collision accident (RESCA) has been developed in order to reproduce the ship collision accident by using AIS, V-PASS or radar data. But the reproduced trajectory of ship collision accident is needed to be verified because it can be unreasonable physically. So a method to verify the reproduced trajectory and collect the physical data on ship collision accident is newly designed by using free running test. In the RESCA, the accident is reproduced using the navigational data from the trajectory for a ship and measured from free running model test for the other ship at the same time. Through free running test, the behavior of the model ship is transformed from model scale into real scale. In order to check into the accuracy of the new method, free running model tests by using RESCA are carried out on the actual ship collision accidents.

Accident Analysis and Discussion of Circular Intersections based on Land Use and Vehicle Type (토지이용과 차종에 근거한 원형교차로 사고분석 및 논의)

  • Lee, Min Yeong;Park, Byung Ho
    • International Journal of Highway Engineering
    • /
    • v.20 no.2
    • /
    • pp.75-85
    • /
    • 2018
  • PURPOSES : This study aimed to analyze traffic accidents at circular intersections, and discuss accident reduction strategies based on land use and vehicle type. METHODS : Traffic accident data from 2010 to 2014 were collected from the "traffic accident analysis system" (TAAS) data set of the Road Traffic Authority. To develop the accident rate model, a multiple linear regression model was used. Explanatory variables such as geometry and traffic volume were used to develop the models. RESULTS : The main results of the study are as follows. First, it was found that the null hypotheses that land use and vehicle type do not affect the accident rate should be rejected. Second, 16 accident rate models, which are statistically significant (with high $R^2$ values), were developed. Finally, the area of the central island, number of speed humps, entry lane width, circulatory roadway width, bus stops, and pedestrian crossings were analyzed to determine their effect on accidents according to the type of land use and vehicle. CONCLUSIONS : Through the developed accident rate models, it was revealed that the accident factors at circular intersections changed depending on land use and vehicle type. Thus, selecting the appropriate location of bus stops for trucks, widening entry lanes for cars, and installing splitter islands and optimal lighting for motorcycles were determined to be important for reducing the accident rate. Additionally, the evaluation showed that commercial and mixed land use had a weaker effect on accidents than residential land use.

Developing the Accident Injury Severity on a Field of Construction Work Using Ordered Probit Model (순서형 프로빗 모형을 적용한 공사장 교통 사고심각도 분석)

  • Hong, Ji-Yeon;Kim, Kyung-Tae;Lee, Soo-Beom
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.2
    • /
    • pp.89-98
    • /
    • 2011
  • The traffic accidents at a construction site, which happen due to construction vehicles' frequent access to a construction site, its subsequent conflicts with ordinary vehicles and pedestrians, and inappropriate installation & management of traffic security facilities, have not many proportions in all traffic accidents, but obviously, the accident damage is quite serious when comparing the level of the fatal per one accident. This research conducted an analysis of traffic accident injury severity using Ordered Probit Model in relation to 241 traffic accident cases that occurred caused by construction sites among the traffic accidents that took place in Seoul and Gyeoggi-do region for two years from 2006 until 2007. As a result, the significant variables enough to explain traffic accident injury severity were analyzed to be the state of road surface, linear shape of an accident spot & whether the damaging car belongs to the vehicle for construction, and whether vehicles have access to a construction site at the time of an accident. Through this, this research found out some fact as follows: first, there need to be more aggressive management of the vehicles for construction and a year-round placement of the manpower who can control vehicular access to a construction site. Second, it is necessary to get drivers to recognize the fact that there exists a construction site on the construction section which is on the border of curved roads in advance to prevent a traffic accident, helping to reduce socioeconomic loss & costs incurred by a traffic accident.

Safety Analysis using bayesian approach (베이지안 기법을 이용한 안전사고 예측기법)

  • Yang, Hee-Joong
    • Journal of the Korea Safety Management & Science
    • /
    • v.9 no.5
    • /
    • pp.1-5
    • /
    • 2007
  • We construct the procedure to predict safety accidents following Bayesian approach. We make a model that can utilize the data to predict other levels of accidents. An event tree model which is a frequently used graphical tool in describing accident initiation and escalation to more severe accident is transformed into an influence diagram model. Prior distributions for accident occurrence rate and probabilities to escalating to more severe accidents are assumed and likelihood of number of accidents in a given period of time is assessed. And then posterior distributions are obtained based on observed data. We also points out the advantages of the bayesian approach that estimates the whole distribution of accident rate over the classical point estimation.

Impact of PSI-KIT Nitriding model on hypothetical Spent Fuel Pool accident simulation

  • Mateusz Malicki;Terttaliisa Lind
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2504-2515
    • /
    • 2023
  • In past years the Paul Scherrer Institute (PSI, Switzerland) and the Karlsruhe Institue of Technology (KIT, Germany)) collaborated to develop a model to account for the active role of nitrogen in the air oxidation of a Zircalloy cladding. The "PSI-KIT Nitriding Model for Zirconium based Fuel Cladding" model was implemented at PSI into PSI-MELCOR 1.8.6. In order to make a preliminary evaluation of the effect of the new model on the evolution of full-scale spent fuel pool accidents, one spent fuel pool event was analyzed using the PSI research version of PSI-MELCOR 1.8.6, which includes the nitriding model. To adapt an existing input deck for the calculations, a sensitivity study was conducted to find an optimal nodalization for the analyses. The nitriding model results were compared to those calculated with the MELCOR 1.8.6-PSI without the new nitriding model. The results demonstrate the effect of the nitriding reactions in spent fuel pool accident progression. Moreover, they confirm the impact of ZrN formation during cladding oxidation in air when the oxidation reactions lead to oxygen starvation inside the fuel assemblies. The nitriding reaction led to higher chemical heat generation during the accident and to an earlier failure of the cladding than when the effect of nitrogen reactions was not considered. It should be noted that the nitriding model, as implemented in the PSI version of MELCOR 1.8.6 has not yet been conclusively validated. Thereby the results presented in this paper should be treated as a preliminary demonstration of the capabilities of the model.

PREDICTION OF THE REACTOR VESSEL WATER LEVEL USING FUZZY NEURAL NETWORKS IN SEVERE ACCIDENT CIRCUMSTANCES OF NPPS

  • Park, Soon Ho;Kim, Dae Seop;Kim, Jae Hwan;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • v.46 no.3
    • /
    • pp.373-380
    • /
    • 2014
  • Safety-related parameters are very important for confirming the status of a nuclear power plant. In particular, the reactor vessel water level has a direct impact on the safety fortress by confirming reactor core cooling. In this study, the reactor vessel water level under the condition of a severe accident, where the water level could not be measured, was predicted using a fuzzy neural network (FNN). The prediction model was developed using training data, and validated using independent test data. The data was generated from simulations of the optimized power reactor 1000 (OPR1000) using MAAP4 code. The informative data for training the FNN model was selected using the subtractive clustering method. The prediction performance of the reactor vessel water level was quite satisfactory, but a few large errors were occasionally observed. To check the effect of instrument errors, the prediction model was verified using data containing artificially added errors. The developed FNN model was sufficiently accurate to be used to predict the reactor vessel water level in severe accident situations where the integrity of the reactor vessel water level sensor is compromised. Furthermore, if the developed FNN model can be optimized using a variety of data, it should be possible to predict the reactor vessel water level precisely.

Effects of Damping and Elastic Nature on the Control Performance of a Safety Budget-Industrial Accidents Model (산재예방예산-산재율 모델의 감쇠 및 탄성 특성이 제어성능에 미치는 영향)

  • Choi, Gi Heung
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.1
    • /
    • pp.6-11
    • /
    • 2013
  • In this study, the effect of damping and elastic nature on the control performance of a safety budget-industrial accident rate model in Korea is examined first. The effectiveness of such dynamic model in establishing safety policies is shown with a simple proportional-integral(PI) feedback control mechanism. Control performance of the safety system model is explained in view of maximizing the effect of IAPF and minimizing the absolute amount of IAFP. Control performance is then evaluated and proved to be effective to prevent and reduce the industrial accidents. Implications in feedback control of a safety system model suggested to optimization of safety policies are also explored. Without proper restructuring of the safety system, it would not be possible to hit the target industrial accident rate. Even if the control objective is met, the amount of industrial accident prevention fund required to reduce the industrial accident rate from the current level to the target level would be far beyond the social consensus.