• Title/Summary/Keyword: accident likelihood

Search Result 55, Processing Time 0.022 seconds

Fire Safety Analysis of Fire Suppression System for Aircraft Maintenance Hangar Using Fault Tree Method (Fault Tree를 활용한 항공기 격납고 소화시스템의 화재 안전성 분석)

  • Lee, Jong-Guk
    • Fire Science and Engineering
    • /
    • v.31 no.6
    • /
    • pp.67-73
    • /
    • 2017
  • An aircraft maintenance hangar is a building that stores, maintains, and inspects expensive aircraft. The frequency of fire occurrence is low, but the resulting human and material damage can be very serious. Therefore, in this study, we conducted a qualitative analysis of the fire safety of the currently operating fire suppression systems for aircraft maintenance hangars using the Fault Tree method, and then performed a quantitative analysis using the failure rate data for the derived basic events and analyzed the importance of the minimal cut sets. As a result of the qualitative analysis by the minimal cut set, it was found that there were 14 accident paths that could be expanded to a large fire, due to the fire control failure of the aircraft hangar fire suppression system. The quantitative analysis revealed that, the probability of the fire expanding into a large one is $2.08{\times}E-05/day$. The analysis of the importance of the minimal cut set shows that four minimal cut sets, namely the fire detector and foam head action according to the zone and blocking of the foam by the aircraft wing and the fire plume, had the same likelihood of causing the fire to develop into a large one, viz. 24.95% each, which together forms the majority of the likelihood. It was confirmed for the first time by fault tree method that the fire suppression system of aircraft maintenance hangars is not suitable for fires under the aircraft wings and needs to be improved.

Analysis of Factors influencing Severity of Motorcycle Accidents using Ordered Probit Model (순서형 프로빗모형에 의한 이륜차 사고심각도의 영향요인 분석)

  • Choi, Jung Woo;Kum, Ki Jung
    • International Journal of Highway Engineering
    • /
    • v.16 no.5
    • /
    • pp.143-154
    • /
    • 2014
  • PURPOSES : This study drew factors affecting motorcycle accidents in Seoul by severity using an ordered probit model and aimed to analyze and verify the drawn influence factors. METHODS : As the severity of the accidents could be classified into three types (fatal injury, serious injury and minor injury), this study drew the factors affecting accidents by a comparative analysis employing an ordered probit model, removed the variables that would not secure significance sequentially to construct a model with high explanatory power regarding the factors affecting the severity of motorcycle accidents, and calculated the marginal effect of each factor to understand the degree of each factor's impact on the severity. First, Model 1 put in all variables; Model 2 was constructed by removing the variables of the road surface conditions that could not meet the level of significance (p=0.608); Model 3 was constructed by removing gender variable (p=0.423); and Model 4 was constructed finally by removing age variable (p=0.320). RESULTS : As a result of an analysis, statistically significant variables were time of occurrence, type of accident, road alignment and motorcycle displacement, and it turned out that the impacts on the severity were in the following order: a road alignment of left downhill, the type of motorcycle-to-vehicle accidents and a road alignment of a flatland on the left. The significance of the models was tested using the likelihood ratio, the level of significance and suitability statistics about them, and as a result of the test, the significance level and suitability of the constructed models were all excellent. In addition, the model accuracy indicating the accuracy of a predicted value compared to that of the value actually observed was 70.3% for minor injury; 70.1% for serious injury; and 68.6% for fatal injury, and the overall accuracy was 70.2%, which was very high. CONCLUSIONS : As a result of an analysis of motorcycle accidents in Seoul through the ordered probit model and the marginal effect, it turned out that their severity increased in nighttime accidents as compared to daytime ones and gradually increased in the order of motorcycle-to-vehicle accidents, motorcycle-to-person ones and the ones involving motorcycle only. As a result of an analysis, the severity of accidents in road alignments of left downhill, left flatland and straight downhill increased as compared to those in a road alignment of straight flatland and that the severity of accidents of motorcycles with a displacement larger than 50cc was higher than that of those with a displacement smaller than 50cc.

Spatiotemporal Analysis of Ship Floating Object Accidents (선박 부유물 감김사고의 시·공간적 분석)

  • Yoo, Sang-Lok;Kim, Deug-Bong;Jang, Da-Un
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.1004-1010
    • /
    • 2021
  • Ship-floating object accidents can lead not only to a delay in ship's operations, but also to large scale casualties. Hence, preventive measures are required to avoid them. This study analyzed the spatiotemporal aspects of such collisions based on the data on ship-floating object accidents in sea areas in the last five years, including the collisions in South Korea's territorial seas and exclusive economic zones. We also provide basic data for related research fields. To understand the distribution of the relative density of accidents involving floating objects, the sea area under analysis was visualized as a grid and a two-dimensional histogram was generated. A multinomial logistic regression model was used to analyze the effect of variables such as time of day and season on the collisions. The spatial analysis revealed that the collision density was highest for the areas extending from Geoje Island to Tongyeong, including Jinhae Bay, and that it was high near Jeongok Port in the West Sea and the northern part of Jeju Island. The temporal analysis revealed that the collisions occurred most frequently during the day (71.4%) and in autumn. Furthermore, the likelihood of collision with floating objects was much higher for professional fishing vessels, leisure vessels, and recreational fishing vessels than for cargo vessels during the day and in autumn. The results of this analysis can be used as primary data for the arrangement of Coast Guard vessels, rigid enforcement of regulations, removal of floating objects, and preparation of countermeasures involving preliminary removal of floating objects to prevent accidents by time and season.

A Study on Selecting Personal Protective Equipment for Listed Hazardous Chemicals (1): Analysis of Hazard Ranks and Workplace Exposure Risks (사고대비물질 개인보호구 선정에 관한 연구(1): 물질유해성 및 작업위해성 분석)

  • Han, Don-Hee;Chung, Sang-Tae;Kim, Jong-Il;Cho, Yong-Sung;Lee, Chung-Soo
    • Journal of Environmental Health Sciences
    • /
    • v.42 no.6
    • /
    • pp.419-429
    • /
    • 2016
  • Objectives: According to the new Chemical Control Act from the Korean Ministry of Environment (2014-259), workers handling hazardous chemicals should wear personal protective equipment (PPE). However the act simply states in basic phrases that every worker handling one or more of the 69 listed chemicals should wear PPE and does not consider the unique hazard characteristics of chemicals and work types. The main purpose of this study is to provide basic data to revise the act to suit particular work processes and situations. Methods: The hazard rank of the substances was classified based on hazardous characteristics such as LC50 and vapor pressure using matrix analysis. The workplace exposure risk of the substances was also determined through a matrix analysis based on the previously determined hazard ranks and the demands of manual handling together with the likelihood of accident frequency of the operation combined with the exposure of workers during spill accidents. Results: To meet the demands for developing subsequent guidelines for the risk-based application of PPE in hazardous workplaces, this study sorted the 69 listed chemicals into five hazardous categories based on their LC50 and vapor pressures, and also assigned exposure categories according to exposure vulnerability for various types of work which are frequently performed throughout the life cycle of the chemicals. Conclusion: In the next study, an exposure risk matrix will be produced using the hazard rank of chemicals and workplace exposure risk, and then PPE will be selected to suit the categories of the exposure risk matrix.

The Study on the Accident Injury Severity Using Ordered Probit Model (순서형 프로빗 모형을 이용한 사고심각도 분석)

  • Ha, Oh-Keun;Oh, Ju-Taek;Won, Jai-Mu;Sung, Nak-Moon
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.4 s.82
    • /
    • pp.47-55
    • /
    • 2005
  • In recent years, the rapid growth of vehicles have increased traffic crashes. Since they can cause the economic losses and have put the life qualify in danger, there should be numerous efforts to reduce traffic crashes. To reduce traffic crashes, this research seeks to improve the safety of intersections by analysing causations of injury severity with Ordered Probability Model. This research applied the Ordered Probit Model, which assumes that ${\epsilon}_i$(random error) is normally distributed, for model calibration and used $p^2$ (likelihood ratio) and $x^2$ (Chi-square) for model selection. The results show that minor road traffic, heavy vehicle rates, major and minor right-turn rates, presence of lightings, speed limits, instructive line for left-turn traffic are significant factors affecting crash severities at signalized intersections.

Study on threat analysis about national important facility and control process (국가중요시설에 대한 위협분석과 처리절차에 관한 연구 - 인천국제공항을 중심으로 -)

  • Hwang, Ho-Won;Lee, Ki-Hun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.17 no.2
    • /
    • pp.31-40
    • /
    • 2009
  • South Korea opened Incheon international airport(IIA) in march 29, 2001, with high expectations of becoming the distribution hub of Northeast Asia and aiming at a world best air hub. IIA compares quite well with any other leading airports in the world in it's facilities for the movement of people and vehicles. However, with the sequence of events following the September, 2001. terrorist attack and the war in Iraq, South Korea, an ally of the US, cannot be considered a safe haven from terrorism. At a point in time when national security is given utmost importance, it is necessary to reevaluate the security of airports, because international terrorism can only occur via air and seaports. Nowadays all the countries of the world have entered into competition for their national interests and innovation of their images. with the increasing role of international airports also comes an increased likelihood as a terrorist target, because it can affect so many people and countries. From the condition of current international terrorism, we can realize that our IIA is not completely safe from a terrorist attack. The major part of counterterrorism is event control process. It's very important for quickly saves an accident and rescues a life of person, In addition for the normalization which the airport operation is prompt. In conclusion, we should secure the legal responsibility and establish and establish a system under which we can work actively in order to implement counter terror activities from being taken an airport.

  • PDF

Human Error Analysis in a Permit to Work System: A Case Study in a Chemical Plant

  • Jahangiri, Mehdi;Hoboubi, Naser;Rostamabadi, Akbar;Keshavarzi, Sareh;Hosseini, Ali Akbar
    • Safety and Health at Work
    • /
    • v.7 no.1
    • /
    • pp.6-11
    • /
    • 2016
  • Background: A permit to work (PTW) is a formal written system to control certain types of work which are identified as potentially hazardous. However, human error in PTW processes can lead to an accident. Methods: This cross-sectional, descriptive study was conducted to estimate the probability of human errors in PTWprocesses in a chemical plant in Iran. In the first stage, through interviewing the personnel and studying the procedure in the plant, the PTW process was analyzed using the hierarchical task analysis technique. In doing so, PTWwas considered as a goal and detailed tasks to achieve the goal were analyzed. In the next step, the standardized plant analysis risk-human (SPAR-H) reliability analysis method was applied for estimation of human error probability. Results: The mean probability of human error in the PTW system was estimated to be 0.11. The highest probability of human error in the PTW process was related to flammable gas testing (50.7%). Conclusion: The SPAR-H method applied in this study could analyze and quantify the potential human errors and extract the required measures for reducing the error probabilities in PTW system. Some suggestions to reduce the likelihood of errors, especially in the field of modifying the performance shaping factors and dependencies among tasks are provided.

Study on key safety hazards and risk assessments for small section utility tunnel in urban areas (도심지 소단면 터널식 공동구의 핵심 안전 위험요소 및 위험성 평가 연구)

  • Seong, Joo-Hyun;Jung, Min-Hyung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.931-946
    • /
    • 2018
  • In line with the increased usability of utility pipe conduits in urban areas, construction and R&D activities of utility tunnel, incorporated with the shield TBM method, are actively under way. The utility tunnels are installed through underground excavation, and thus are relatively weak in terms of construction safety. However, hazards associated with the utility tunnel construction have not been properly identified, despite the introduction of a policy to the 'Design for Safety' for the purpose of reducing accident rates in the construction industry. Therefore, in this study, following the derivation of hazards associated with utility tunnel, these hazards were then used as the basis to uncover key safety hazards requiring extensive management in a field, which were then used to conduct a risk assessment having applied the matrix method so that the results can be utilized in risk assessment during the stages of utility tunnel planning, design, and construction, while also serving as a data reference.

Regulatory Aspects of Passenger and Crew Safety: Crash Survivability and the Emergency Brace Position

  • Davies, Jan M.
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.33 no.2
    • /
    • pp.199-224
    • /
    • 2018
  • Aviation's safety record continues to improve yearly, especially with respect to passenger and crew injuries and deaths. However, although the number of accidents has decreased over the decades, there are still many events, such as landings short of the runway and runway excursions, both of which pose threats to passenger and crew safety. Surviving any kind of aviation accident depends on the physiological threat and stress of the impact(s), the extent to which the physical structure surrounding the passengers and crew remains intact, and the ability of the passengers and crew to be able to escape the wreckage. The one action that both passengers and crew can carry out to help decrease the likelihood of crash-related injury or death is to assume an emergency brace position. Doing so has been demonstrated over several decades to improve survivability. While cabin crew are taught (and then might have to teach passengers in an emergency about the emergency brace position), passengers in many parts of the world never learn about the brace position unless they are involved in an emergency in which there is time to prepare for the landing. This lack of provision of information is related to the fact that most airlines do not provide information in the preflight safety briefing and some do not even provide the information in the passenger safety cards. Many countries do not require their airlines to do so, a fact, which in turn, is related to the lack of mention of the brace position in ICAO's Annex 6. Until standards and recommended practices are changed at the highest world level, passengers will continue to be deprived of this vital, life-saving information that they can use, potentially to help save their own lives.

The effect of wearing a helmet on head injury risks among personal mobility vehicle riders: A study of patients who visited a regional emergency medical center due to traffic accidents (개인형 이동수단별 헬멧 착용 유무가 두부 손상에 미치는 영향: 일개 권역응급의료센터에 교통사고로 내원한 환자를 대상으로)

  • So-Yeon An;Yong-Joon Kim;Kyoung-Yul Sim;Kyoung-Youl Lee
    • The Korean Journal of Emergency Medical Services
    • /
    • v.27 no.2
    • /
    • pp.7-17
    • /
    • 2023
  • Purpose: This study aimed to identify the factors that contribute to head injuries among drivers of personal mobility devices and provide insights into safety perceptions. Methods: This retrospective study analyzed data of 221 trauma patients obtained from electronic medical records and the National Emergency Department Information System (NEDIS) over one year, from August 1, 2021, to July 31, 2022. The patients, all in their 20s and 30s, presented to a single emergency medical center following personal mobility device accidents (motorcycles, electric scooters, and bicycles). Results: Among motorcycle riders, 18.2% were not wearing helmets, while the percentage of e-scooter riders not wearing helmets was 87.5%. Wearing a helmet was associated with a 71.2% lower likelihood of head injuries (OR=0.288, CI=0.163 to 0.509, p=0.000). Of the personal mobility devices, motorcycles had a 0.431 times lower odds ratio for head injury compared to e-scooters (p=0.009), and there was no significant difference between e-scooters and bicycles (p=0.776). Conclusion: It is imperative to strengthen safety regulations by mandating helmet use for riders of personal mobility devices. A system to enhance driving enforcement for electric scooters, which are increasingly popular among young adults, should also be established.