• Title/Summary/Keyword: accident analysis model

Search Result 850, Processing Time 0.025 seconds

The Consequence Analysis for Unconfined Vapor Cloud Explosion Accident by the Continuous Release of Butane Vapor in the Debutanizing Process of Naphtha Cracking Plant (나프타분해플랜트의 부탄추출공정에서 부탄증기의 연속누출에 의한 증기운 폭발사고의 영향평가)

  • 손민일;이헌창;장서일;김태옥
    • Journal of the Korea Safety Management & Science
    • /
    • v.2 no.4
    • /
    • pp.33-43
    • /
    • 2000
  • The consequence analysis for the unconfined vapor cloud explosion(UVCE) accident by the continuous release of butane vapor was performed and effects of process parameters on consequences were analyzed in standard conditions. For the case of continuous release(87.8 kg/s) of butane vapor at 8 m elevated height in the debutanizing process of tile naphtha cracking plant operating at 877 kPa & 346.75 K, we found that combustion ranges of dispersed vapor estimated by HMP model were 11.2~120.2 m and overpressures estimated by TNT equivalency model at 200 m were about 37.35~55.1 kPa. Also, overpressures estimated by Model UVCE I based on advective travel time to $X_{LFL}$ were smaller than those estimated by Model UVCE IIbased on real travel time between $X_{UFL}$ and $X_{LFL}$. At the same time, damage intensities at 200 m and effect ranges by overpressure could be predicted. Furthermore, simulation results showed that effects of operating pressures on consequences were larger than those of operating temperatures and results of accidents were increased with increasing operating pressures. At this time, sensitivities of overpressures for UVCE accident by the continuous release were about 5 kPa/atm.

  • PDF

A Basic Study on Quantification Model Development of Human Accidents based on the Insurance Claim Payout of Construction Site (건설공사보험 사례를 활용한 건설현장 인명사고 정량화 모델 개발 기초연구)

  • Ha, Sun-Geun;Kim, Tae-Hui;Kim, Ji-Myong;Jang, Jun-Ho;Son, Ki-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.195-196
    • /
    • 2017
  • The number of human accidents in the construction industry is increasing every year, and it constitute the highest percentage among industry. This means that activities performed to prevent safety accidents in the country are not efficient to reduce the rate of accidents in the construction industry. In order to solve this issue, research has been conducted from various perspectives. But, research regarding to quantification model of human accidents is insufficient. the objective of this study is to conduct a basic study on quantification model development of human accidents. To achieve the objective, first, Cause of accident is defined the through literature review. Second, a basic statistic analysis is conducted to determine the characteristics of the accident causes. Third, the analysis is conducted after dividing into four categories : accumulate rate, season, total construction cost, and location. In the future, this study can be used as a reference for developing the safety management checklist for safety management in construction site and development of prediction models of human accident.

  • PDF

The Influence of Safety Leadership on Safety Behavior, Safety Climate and Accident: Meta Analysis (안전 리더십이 안전 행동, 안전 분위기, 사고에 미치는 효과: 메타 분석)

  • Moon, Kwangsu
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.6
    • /
    • pp.66-76
    • /
    • 2018
  • This study examined the influence of safety leadership on safety behavior, safety climate and accident using meta analysis. Specifically, safety leadership model which incorporated both transformational and active transactional leadership styles was tested using meta analysis. The results showed that both transformational and active transactional leadership had a positive relationship with safety compliance and participation behavior, and organizational safety climate. However, both leadership styles had a negative relationship with accident. In addition, transformational leadership had significant greater effects on safety behaviors and accident than transactional leadership. In contrast, although there were no significant differences, transactional leadership has a greater effect on the safety climate. These findings suggest that active transactional leadership is important in establishing perceived safety climate of employees, whereas transformational leadership is more related with improving employees' safety behaviors. Therefore, in line with the previous studies of safety leadership, a combination of both transformational and transactional styles will be most beneficial for developing organizational safety management program. Based on these results, practical implications and further research in terms of development for safety leadership program are discussed.

Analysis of MSGTR-PAFS Accident of the ATLAS using the MARS-KS Code (MARS-KS 코드를 사용한 ATLAS 실험장치의 MSGTR-PAFS 사고 분석)

  • Jeong, Hyunjoon;Kim, Taewan
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.3
    • /
    • pp.74-80
    • /
    • 2021
  • Korea Atomic Energy Research Institute (KAERI) has been operating an integral effects test facility, the Advanced Thermal-Hydraulic Test Loop for Accident Simulation (ATLAS), according to APR1400 for transient experimental and design basis accident simulation. Moreover, based on the experimental data, the domestic standard problem (DSP) program has been conducted in Korea to validate system codes. Recently, through DSP-05, the performance of the passive auxiliary feedwater system (PAFS) in the event of multiple steam generator tube rupture (MSGTR) has been analyzed. However, some errors exist in the reference input model distributed for DSP-05. Furthermore, the calculation results of the heat loss correlation for the secondary system presented in the technical report of the reference indicate that a large difference is present in heat loss from the target value. Thus, in this study, the reference model is corrected using the geometric information from the design report and drawings of ATLAS. Additionally, a new heat loss correlation is suggested by fitting the results of the heat loss tests. Herein, MSGTR-PAFS accident analysis is performed using MARS-KS 1.5 with the improved model. The steady-state calculation results do not significantly differ from the experimental values, and the overall physical behavior of the transient state is properly predicted. Particularly, the predicted operating time of PAFS is similar to the experimental results obtained by the modified model. Furthermore, the operating time of PAFS varies according to the heat loss of the secondary system, and the sensitivity analysis results for the heat loss of the secondary system are presented.

ANALYSIS OF PRESTRESSED CONCRETE CONTAINMENT VESSEL (PCCV) UNDER SEVERE ACCIDENT LOADING

  • Noh, Sang-Hoon;Moon, Il-Hwan;Lee, Jong-Bo;Kim, Jong-Hak
    • Nuclear Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.77-86
    • /
    • 2008
  • This paper describes the nonlinear analyses of a 1:4 scale model of a prestressed concrete containment vessel (PCCV) using an axisymmetric model and a three-dimensional model. These two models are refined by comparison of the analysis results and with testing results. This paper is especially focused on the analysis of behavior under pressure and the temperature effects revealed using an axisymmetric model. The temperature-dependent degradation properties of concrete and steel are considered. Both geometric and material nonlinearities, including thermal effects, are also addressed in the analyses. The Menetrey and Willam (1995) concrete constitutive model with non-associated flow potential is adopted for this study. This study includes the results of the predicted thermal and mechanical behaviors of the PCCV subject to high temperature loading and internal pressure at the same time. To find the effect of high temperature accident conditions on the ultimate capacity of the liner plate, reinforcement, prestressing tendon and concrete, two kinds of analyses are performed: one for pressure only and the other for pressure with temperature. The results from the test on pressurization, analysis for pressure only, and analyses considering pressure with temperatures are compared with one another. The analysis results show that the temperature directly affects the behavior of the liner plate, but has little impact on the ultimate pressure capacity of the PCCV.

A FRAM-based Systemic Investigation of a Rail Accident Involving Human Errors (인적오류가 관여된 철도 사고의 체계적 분석을 위한 FRAM의 활용)

  • Choi, Eun-Bi;Ham, Dong-Han
    • Journal of the Korea Safety Management & Science
    • /
    • v.22 no.1
    • /
    • pp.23-32
    • /
    • 2020
  • There has been a significant decline in the number of rail accidents in Korea since system safety management activities were introduced. Nonetheless, analyzing and preventing human error-related accidents is still an important issue in railway industry. As a railway system is increasingly automated and intelligent, the mechanism and process of an accident occurrence are more and more complicated. It is now essential to consider a variety of factors and their intricate interactions in the analysis of rail accidents. However, it has proved that traditional accident models and methods based on a linear cause-effect relationship are inadequate to analyze and to assess accidents in complex systems such as railway systems. In order to supplement the limitations of traditional safety methods, recently some systemic safety models and methods have been developed. Of those, FRAM(Functional Resonance Analysis Method) has been recognized as one of the most useful methods for analyzing accidents in complex systems. It reflects the concepts of performance adjustment and performance variability in a system, which are fundamental to understanding the processes of an accident in complex systems. This study aims to apply FRAM to the analysis of a rail accident involving human errors, which occurred recently in South Korea. Through the application of FRAM, we found that it can be a useful alternative to traditional methods in the analysis and assessment of accidents in complex systems. In addition, it was also found that FRAM can help analysts understand the interactions between functional elements of a system in a systematic manner.

A Review on Practical Use of Simple Analysis Method based on SDOF Model for the Stiffened Plate Structures subjected to Blast Loads (폭발하중을 받는 보강판 구조물의 간이 해석법에 대한 실용성 검토)

  • Kim, Ul-Nyeon;Ha, Simsik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.2
    • /
    • pp.70-79
    • /
    • 2020
  • The offshore installation units may be subjected to various accidental loads such as collision from supply vessels, impact from dropped objects, blast load from gas explosion and thermal load from fire. This paper deals with the design and strength evaluation method of the stiffened plate structures in response to a blast load caused by a gas explosion accident. It is a comprehensive review of various items used in actual project such as the size and type of the explosive loads, general design procedure/concept and analysis method. The structural analyses using simple analysis methods based on SDOF model and nonlinear finite element analysis are applied to the particular FPSO project. Also validation studies on the design guidance given by simple analysis method based on SDOF model have also considered several items such as backpressure effects, material behavior and duration time of the overpressure. A good correlation between the prediction made by simple analysis method based on SDOF model and nonlinear finite element analysis can be generally obtained up to the elastic limit.

Development of Traffic Accident Rate Forecasting Models for Trumpet IC Exit Ramp of Freeway using Variables Transformation Method (변수변환 기법을 이용한 고속도로 트럼펫IC 유출연결로 교통사고율 예측모형 개발)

  • Yoon, Byoung-Jo
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.139-150
    • /
    • 2008
  • In this study, It is focused on development of the forecasting model about trumpet InterChange(IC) ramp accident because of the frequency of accident in ramp more than highway basic section and trend the increasing accident in ramp. The independent variables was selected through statistical analysis(correlation analysis, multi-collinearity etc) by ramp types(direct, semi-direct and loop). The independent variables and accident rate is non-linear relationship. So it made new variables by transformation of the independent variables. The forecasting models according to exit-ramp type (direct, semi-direct and loop) are built with statistical multi-variable regression using all possible regression method. And the forecasts of the models showed high accuracy statistically. It is expected that the developed models could be employed to design trumpet IC ramp more cost-efficiently and safely and to analyze the causes of traffic accidents happened on the IC ramp.

  • PDF

A Development on the Safety Management Information System in Building Work (빌딩공사의 안전관리정보시스템 개발)

  • Park, Jong-Keun
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.4 s.72
    • /
    • pp.71-77
    • /
    • 2005
  • There are insufficient models that find problems and solutions for accident prevention through risk assessment and suggest safe work process and work instruction from foundation works to finish work for accident decrease. This paper presents a quantitative risk assessment model by analysis of risk factors in each process such as foundation, erection, structure, equipment finish and etc based on accident examples and investigation on actual condition in building. In addition, the safety management system was developed to perform risk assessment of construction and use it for effective safety training for labor.

Analysis of Traffic Accident Severity for Korean Highway Using Structural Equations Model (구조방정식모형을 이용한 고속도로 교통사고 심각도 분석)

  • Lee, Ju-Yeon;Chung, Jin-Hyuk;Son, Bong-Soo
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.2
    • /
    • pp.17-24
    • /
    • 2008
  • Traffic accident forecasting model has been developed steadily to understand factors affecting traffic accidents and to reduce them. In Korea, the length of highways is over 3,000km, and it is within the top ten in the world. However, the number of accidents-per-one kilometer highway is higher than any other countries. The rapid increase of travel demand and transportation infrastructures since 1980's may influence on the high rates of traffic accident. Accident severity is one of the important indices as well as the rate of accident and factors such as road geometric conditions, driver characteristics and type of vehicles may be related to traffic accident severity. However, since all these factors are interacted complicatedly, the interactions are not easily identified. A structural equations model is adopted to capture the complex relationships among variables. In the model estimation, we use 2,880 accident data on highways in Korea. The SEM with several factors mentioned above as endogenous and exogenous variables shows that they have complex and strong relationships.