• Title/Summary/Keyword: accident analysis model

Search Result 829, Processing Time 0.027 seconds

Analysis of Seasonal Variation Effect of the Traffic Accidents on Freeway (고속도로 교통사고의 계절성 검증과 요인분석 (중부고속도로 사례를 중심으로))

  • 이용택;김양지;김대현;임강원
    • Journal of Korean Society of Transportation
    • /
    • v.18 no.5
    • /
    • pp.7-16
    • /
    • 2000
  • This paper is focused on verifying time-space repetition of the highway accident and finding the their causes and deterrents. We classify all months into several seasonal groups, develop the model for each seasonal group and analyze the results of these models for Joong-bu highway. The existence of seasonal effect is verified by the analysis or self-organizing map and the accident indices. Agglomerative hierarchical cluster analysis which is used to decide the seasonal groups in accordance with accident patterns, winter group, spring-fall group. and summer group. The accident features of winter group are that the accident rate is high but the severity rate is low. while those of summer group are that the accident rate is low but the severity rate is high. Also, the regression model which is developed to identify the accident Pattern or each seasonal group represents that the season-related factors, such as the amount of rainfall, the amount of snowfall, days of rainfall, days of snowfall etc. are strongly related to the accident pattern of evert seasonal group and among these factors the traffic volume, amount of rainfall. the amount of snowfall and days of freezing importantly affect the local accident Pattern. So, seasonal effect should be considered to the identification of high-risk road section. the development of descriptive and Predictive accident model, the resource allocation model of accident in order to make safety management plan efficient.

  • PDF

A Study on Industrial Accident Cases by an Application of Correlation Analysis (상관분석을 응용한 산업재해 사례요인의 고찰)

  • 정국삼;홍광수
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.1
    • /
    • pp.141-149
    • /
    • 1999
  • At present time, industrial accidents statistics are used as the basic data of the policy to prevent industrial accidents and the plan to applicate the industrial accident insurance. But this statistical data is not sufficient for the effective safety management because it is the expression of the itemized distribution and the frequency for the whole cases. This study tried to correlational analysis for each causes by defining investigational items as their accident parameters. The correlational analysis, between the unsafe action and status and their relational causes, was performed to analyze the occurrence causes of industrial accident. And to assume the severity of accident, the correlativity and independency between causes and direct causes which are defined hospital days subordinate parameter were analyzed. In addition, this study expressed numerically the effectiveness of subordinate parameters depended on the level of independent parameter by presenting the predictive model between dependent parameter and independent parameter, which have the categorical parameter, through the Logit analysis method.

  • PDF

Development of a Quantitative Resilience Model for Severe Accident Response Organizations of Nuclear Power Plants: Application of AHP Method (원자력발전소 중대사고 대응 조직에 대한 레질리언스 정량적 모델 개발: AHP 방법 적용)

  • Park, Jooyoung;Kim, Ji-tae;Lee, Sungheon;Kim, Jonghyun
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.1
    • /
    • pp.116-129
    • /
    • 2020
  • Resilience is defined as the intrinsic ability of a system to adjust its functioning prior to, during, or following changes and disturbances, so that it can sustain required operations or functions with the related systems under both expected and unexpected conditions. Resilience engineering is a relatively new paradigm for safety management that focuses on how to cope with complexity under pressure or disturbance to achieve successful functioning. This study aims to develop a quantitative resilience model for severe accident response organizations of nuclear power plants using the Analytic Hierarchy Process (AHP) method. First, we investigated severe accident response organizations based on a radiation emergency plan in the Korean case and developed a qualitative resilience model for the organizations with resilience-influencing factors, which have been identified in the author's previous studies. Then, a quantitative model for entire severe accident response organizations was developed by using the Analytic Hierarchy Process (AHP) method with a tool for System Dynamics. For applying the AHP method, several experts who are working on implementing, regulating or researching the severe accident response participated in collecting their expertise on the relative importance between all the possible relations in the model. Finally, a sensitivity analysis was carried out to discuss which factors have the most influenceable on resilience.

Social Safety Systems through Big Data Analysis of Public Data (공공 데이터의 빅데이터 분석을 통한 사회 안전망 시스템)

  • Lee, Sun Yui;Jung, Jun Hee;Cha, Gyeong Hyeon;Son, Ki Jun;Kim, Sang Ji;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.4
    • /
    • pp.77-82
    • /
    • 2015
  • This paper proposed an accident prediction model in order to prevent accidents in mountain areas using a big data analysis. Data of accidents in mountain areas are shown as graphs. We have analyzed cases: the number of accidents per year, day of week, time of day to find patterns of the negligent accident in mountain areas. The proposed prediction model consists of weighted variables of the accident in mountain through visualized big data analysis. The model of danger index performance is demonstrated by showing accident-prone areas with weighted variables.

A Method to Measure Damage Areas on Railway Accidents by the HAZMATs types using GIS Spatial Analysis (GIS 공간 분석기법을 활용한 위험물질별 철도사고 피해규모 자동추출방안에 관한 연구)

  • Park, Min-Kyu;Kim, Si-Gon;Lee, Won-Tae
    • Journal of the Korea Safety Management & Science
    • /
    • v.12 no.1
    • /
    • pp.35-42
    • /
    • 2010
  • Due to the industrialization and urbanization, the transport of hazardous materials increases, which rises possibilities in occurring prospective accidents in terms of hazardous material transport as well. This study applied the model developed from the previous research to analyze the scale of damage areas from the accidents related to hazardous material accidents, as well as suggested a method to measure automatically the scale of accident including casualties and environmental damage based on the guideline which suggests the quantities of hazardous materials exposed from an accident and was defined in the study of standardization for hazardous material classification. A buffering analysis technique of Geographic Information System (GIS) was applied for that. To apply the model which evaluates the scale of population and exposure to environment on each link, rail network, zones, rail accident data, rail freight trips, and locations of rivers etc were complied as a database for GIS analysis. In conclusion, a method to measure damage areas by the types of hazardous materials was introduced using a Clip and a Special Join technique for overlay analysis.

A Quantitative Model of System-Man Interaction Based on Discrete Function Theory

  • Kim, Man-Cheol;Seong, Poong-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.430-449
    • /
    • 2004
  • A quantitative model for a control system that integrates human operators, systems, and their interactions is developed based on discrete functions. After identifying the major entities and the key factors that are important to each entity in the control system, a quantitative analysis to estimate the recovery failure probability from an abnormal state is performed. A numerical analysis based on assumed values of related variables shows that this model produces reasonable results. The concept of 'relative sensitivity' is introduced to identify the major factors affecting the reliability of the control system. The analysis shows that the hardware factor and the design factor of the instrumentation system have the highest relative sensitivities in this model. T도 probability of human operators performing incorrect actions, along with factors related to human operators, are also found to have high relative sensitivities. This model is applied to an analysis of the TMI-2 nuclear power plant accident and systematically explains how the accident took place.

Deciding the Optimal Shutdown Time Incorporating the Accident Forecasting Model (원자력 발전소 사고 예측 모형과 병합한 최적 운행중지 결정 모형)

  • Yang, Hee Joong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.4
    • /
    • pp.171-178
    • /
    • 2018
  • Recently, the continuing operation of nuclear power plants has become a major controversial issue in Korea. Whether to continue to operate nuclear power plants is a matter to be determined considering many factors including social and political factors as well as economic factors. But in this paper we concentrate only on the economic factors to make an optimum decision on operating nuclear power plants. Decisions should be based on forecasts of plant accident risks and large and small accident data from power plants. We outline the structure of a decision model that incorporate accident risks. We formulate to decide whether to shutdown permanently, shutdown temporarily for maintenance, or to operate one period of time and then periodically repeat the analysis and decision process with additional information about new costs and risks. The forecasting model to predict nuclear power plant accidents is incorporated for an improved decision making. First, we build a one-period decision model and extend this theory to a multi-period model. In this paper we utilize influence diagrams as well as decision trees for modeling. And bayesian statistical approach is utilized. Many of the parameter values in this model may be set fairly subjective by decision makers. Once the parameter values have been determined, the model will be able to present the optimal decision according to that value.

Analysis on Comparison of Highway Accident Severity between Weekday and Weekend using Structural Equation Model (구조방정식 모형을 이용한 주중과 주말의 고속도로 사고심각도 비교분석)

  • Bae, Yun Kyung;Ahn, Sunyoung;Chung, Jin-Hyuk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2483-2491
    • /
    • 2013
  • In order to identify and understand the crucial factors to induce traffic accident, causal relationships between diverse factors and traffic accident occurrence have been investigated continuously. It is one of most important issues all over the world to reduce the number of traffic accidents and deaths by them. Korea government is also stepping up their effort to reduce the number of traffic accidents and mitigate the severity of the accidents by establishing various traffic safety strategies. By introducing the five-day work week and increasing concern of leisure activities, the differences of trip characteristics between weekday and weekend is getting greater. According to this, the patterns and crucial factors of traffic accident occurrence in weekend appear differently from those in weekday. This study aims to understand major different factors affecting accident severity between weekday and weekend using 12,042 incident data occurred on freeways of Korea from 2006 to 2011. The model developed in this study estimated relationships among various exogenous factors of traffic accident by each type using SEM(Structural Equation Model). The result provides that road factors are related to the accident severity for weekday model, while environment factors affects on accident severity for weekend.

Rear-end Accident Models of Rural Area Signalized Intersections in the Cases of Cheongju and Cheongwon (청주.청원 지방부 신호교차로의 후미추돌 사고모형)

  • Park, Byoung-Ho;In, Byung-Chul
    • International Journal of Highway Engineering
    • /
    • v.11 no.2
    • /
    • pp.151-158
    • /
    • 2009
  • This study deals with the rear-end collisions in the rural aiea. The objectives of this study are 1) to analyze the characteristics of rear-end accidents of signalized intersections, and 2) to develop the accident models for Cheongju-Cheongwon. In pursing the above, this study gives the particular attentions to comparing the characters of urban and rural area. In this study, the dependent variables are the number of accidents and value of EPDO(equivalent property damage only), and independent variables are the traffic volumes and geometric elements. The main results analyzed are the followings. First, the statistical analyses show that the Poisson accident model using the number of accident as a dependant variable are statistically significant and the negative binomial accident model using the value of EPDO are statistically significant. Second, the independent variables of Poisson model are analyzed to be the ratio of high-occupancy vehicles, total traffic volume and the sum of exit/entry, and those of negative binomial regression are the main road width, total traffic volume and the ratio of high-occupancy vehicles. Finally, the specific independent variables to the rural area are the main road width, the ratio of high occupancy vehicle, and the sum exit/entry.

  • PDF