• Title/Summary/Keyword: access delay

Search Result 932, Processing Time 0.021 seconds

An Iterative Analysis of Single-Hop B-MAC Networks Under Poisson Traffic

  • Jung, Sung-Hwan;Choi, Nak-Jung;Kwon, Tae-Kyoung
    • Journal of Communications and Networks
    • /
    • v.14 no.1
    • /
    • pp.40-50
    • /
    • 2012
  • The Berkeley-medium access control (B-MAC) is a lightweight, configurable and asynchronous duty cycle medium access control (MAC) protocol in wireless sensor networks. This article presents an analytic modelling of single-hop B-MAC protocol under a Poisson traffic assumption.Our model considers important B-MAC parameters such as the sleep cycle, the two stage backoff mechanism, and the extended preamble. The service delay of an arriving packet and the energy consumption are calculated by an iterative method. The simulation results verify that the proposed analytic model can accurately estimate the performance of single-hop B-MAC with different operating environments.

Mobility-adaptive QoE Provisioning Solution in Heterogeneous Wireless Access Networks

  • Kim, Moon;Cho, Sung-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.8B
    • /
    • pp.1159-1169
    • /
    • 2010
  • This paper introduces the mobility-adaptive QoE provisioning solution. The key is placed on the intelligent selection of access network depending on the QoE criteria classified by the user mobility and the bandwidth demand for service. We further focus on the network-based smart handover scheme using the mobility-adaptive handover decision and the enhanced MIH-FMIP framework. The concept is the network-based calm service and the balance in order to facilitate vertical and seamless handover. In result, it is figured out that our solution improves QoE performance by selecting appropriate access network, repressing handover occurrence, and reducing handover delay as well.

MAC Protocol Design for Underwater Data Communication (수중 데이터 통신을 위한 MAC(Media Access Control) 프로토콜 설계)

  • Yeo, Jin-Ki;Lim, Young-Kon;Lee, Heung-Ho;Lee, Sung-Min
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2619-2621
    • /
    • 2001
  • This study proposes a new efficient MAC(media access control) protocol to establish the ultrasonic communication network for under water vehicles, which ensures a certain level of maximum throughput regardless of the propagation delay of ultrasonic and allows fast data transmission through the multiple ultrasonic communication channel. In this study, a media access control protocol for underwater communication network that allows 'peer-to-peer' communication between a surface ship and multiple underwater system is designed, and the proposed control protocol is implementde for its verification.

  • PDF

Slotted ALOHA with Variable Slot Length for Underwater Acoustic Systems (수중 통신 시스템을 위한 가변 길이를 갖는 Slotted ALOHA)

  • Lee, Junman;Kang, Chung G.
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.1
    • /
    • pp.104-106
    • /
    • 2016
  • In this letter, we consider a random access scheme for underwater acoustic network, in which a slotted ALOHA with variable slot length is designed to enhance the random access performance for the nodes with the varying propagation delay.

Genetic algorithm-based content distribution strategy for F-RAN architectures

  • Li, Xujie;Wang, Ziya;Sun, Ying;Zhou, Siyuan;Xu, Yanli;Tan, Guoping
    • ETRI Journal
    • /
    • v.41 no.3
    • /
    • pp.348-357
    • /
    • 2019
  • Fog radio access network (F-RAN) architectures provide markedly improved performance compared to conventional approaches. In this paper, an efficient genetic algorithm-based content distribution scheme is proposed that improves the throughput and reduces the transmission delay of a F-RAN. First, an F-RAN system model is presented that includes a certain number of randomly distributed fog access points (F-APs) that cache popular content from cloud and other sources. Second, the problem of efficient content distribution in F-RANs is described. Third, the details of the proposed optimal genetic algorithm-based content distribution scheme are presented. Finally, simulation results are presented that show the performance of the proposed algorithm rapidly approaches the optimal throughput. When compared with the performance of existing random and exhaustive algorithms, that of the proposed method is demonstrably superior.

5G MEC (Multi-access Edge Computing): Standardization and Open Issues (5G Multi-access Edge Computing 표준기술 동향)

  • Lee, S.I.;Yi, J.H.;Ahn, B.J.
    • Electronics and Telecommunications Trends
    • /
    • v.37 no.4
    • /
    • pp.46-59
    • /
    • 2022
  • The 5G MEC (Multi-access Edge Computing) technology offers network and computing functionalities that allow application services to improve in terms of network delay, bandwidth, and security, by locating the application servers closer to the users at the edge nodes within the 5G network. To offer its interoperability within various networks and user equipment, standardization of the 5G MEC technology has been advanced in ETSI, 3GPP, and ITU-T, primarily for the MEC platform, transport support, and MEC federation. This article offers a brief review of the standardization activities for 5G MEC technology and the details about the system architecture and functionalities developed accordingly.

A reinforcement learning-based network path planning scheme for SDN in multi-access edge computing

  • MinJung Kim;Ducsun Lim
    • International journal of advanced smart convergence
    • /
    • v.13 no.2
    • /
    • pp.16-24
    • /
    • 2024
  • With an increase in the relevance of next-generation integrated networking environments, the need to effectively utilize advanced networking techniques also increases. Specifically, integrating Software-Defined Networking (SDN) with Multi-access Edge Computing (MEC) is critical for enhancing network flexibility and addressing challenges such as security vulnerabilities and complex network management. SDN enhances operational flexibility by separating the control and data planes, introducing management complexities. This paper proposes a reinforcement learning-based network path optimization strategy within SDN environments to maximize performance, minimize latency, and optimize resource usage in MEC settings. The proposed Enhanced Proximal Policy Optimization (PPO)-based scheme effectively selects optimal routing paths in dynamic conditions, reducing average delay times to about 60 ms and lowering energy consumption. As the proposed method outperforms conventional schemes, it poses significant practical applications.

A Study on the Cycle Time Optimizing and the Delay Reducing for the MAC of NGA PON (NGA PON의 MAC을 위한 사이클 타임 최적화 및 지연감소에 관한 연구)

  • Chung, Hae;Kim, Jin-Hee;Kim, Geun-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.9A
    • /
    • pp.685-696
    • /
    • 2009
  • The requirements of the NGA are to provide broader bandwidth, higher splitting ratio, and longer reach than those of the current FTTH. In the TDMA PON accounting for large percentage in the total FTTH, the increase in distance between the OLT and the ONU leads to the increase in propagation delay and in packet delay three times more than the propagation delay. It is because a packet arrived in the ONU is handled through bandwidth request, grant, and transmission. To reduce the increased packet delay, the OLT have to reduce the cycle time. However, it will cause increased overhead and reduced link efficiency. In this paper, we investigate several problems in TDMA PON when the subscriber access network extended to 60 or 100 Km reach as a NGA goal and provide a method that determines an optimal cycle time to satisfy QoS for delay sensitive traffics. In particular, we suggest a variable equalized round trip delay method and a variable cycle time method. It is shown that the former reduces the packet delay and the latter increase the link efficiency.

Delay-Aware Packet Scheduling (DAPS) Algorithm in 3GPP LTE System (LTE 시스템에서 지연에 대한 QoS 보장을 위한 하향링크 패킷 스케줄링 알고리즘)

  • Choi, Bum-Gon;Chung, Min-Young;Lee, Hye-Kyung;Kim, Tai-Suk;Kang, Jee-Woong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5B
    • /
    • pp.498-508
    • /
    • 2009
  • In wireless mobile environments, large bandwidth and high QoS (Quality of Service) are recently required to support the increased demands for multimedia services. LTE (Long Term Evolution) is one of the promising solutions for the next generation broadband wireless access systems. To efficiently use downlink resource and effectively support QoS, packet scheduling algorithm is one of the important features in LTE system. In this paper, we proposed DAPS (Delay-Aware Packet Scheduling) algorithm to consider QoS requirements of delays for various traffic classes as well as channel condition and fairness. To reflect delay experiences at scheduling instance, DAPS observes how queue waiting time of packet is closed to maximum allowable delay. The simulation results show that the DAPS algorithm yields better performance for delay experience by increasing the number of transmitted packets with satisfying the required delay time compared with existing scheduling algorithms.

An Efficient Packet Scheduling Scheme to support Real-Time Traffic in OFDMA Systems (OFDMA 시스템에서 실시간 트래픽 전송을 위한 효율적 스케쥴링 기법)

  • Park, Jeong-Sik;Cho, Ho-Shin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.1A
    • /
    • pp.13-23
    • /
    • 2007
  • In this paper, a packet scheduling scheme that supports real-time traffic having multi-level delay constraints in OFDMA systems is proposed. The proposed scheme pursues to satisfy the delay constraint first, and then manage the residual radio resource in order to enhance the overall throughput. A parameters named tolerable delay time (TDT) is newly defined to deal with the differentiated behaviors of packet scheduling according to the delay constraint level. Assuming that the packets violating the delay constraint are discarded, the proposed scheme is evaluated in terms of the packet loss probability, throughput, channel utilization. It is then compared with existing schemes for real-time traffic support such as the Exponential Scheduling (EXP) scheme, the Modified Largest Weighted Delay First (M-LWDF) scheme, and the Round robin scheme. The numerical results show that the proposed scheduling scheme performs much better than the aforementioned scheduling schemes in terms of the packet loss probability, while slightly better in terms of throughput and channel utilization.