• Title/Summary/Keyword: accelerometers

Search Result 497, Processing Time 0.027 seconds

Precision Phase Calibration System of Accelerometers (가속도계 정밀 위상 교정 시스템)

  • Lee, Yang-Bong;Jung, Sung-Soo;Jin, Jong-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.5
    • /
    • pp.585-590
    • /
    • 2011
  • Accelerometers have been exploited widely in various fields from monitoring vibration of precision machines to detecting an earthquake wave. The precision calibration of the accelerometers is required to maintain the measurement reliability when measuring the vibration of objects with accelerometers for modal analysis. Among evaluation factors for determining sensitivity of accelerometers, phase delay term should be also considered for accurate calibration. In this paper, a new calibration system of accelerometers capable of measuring phase delay as well as magnitude of its sensitivity was proposed and realized in the frequency range of 20 Hz to 5 kHz.

Implementation of a Touch Panel System using Accelerometers (가속도센서를 이용한 터치패널시스템 구현)

  • Lee, Young-Sup;Kim, Dong-Il;Kang, Min-Su
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.12
    • /
    • pp.1194-1202
    • /
    • 2011
  • A touch panel system has been one of the most widely used input devices. In this study, a touch panel embedded system using accelerometers is considered in order to make commercial white-boards or plates into touch panels. Three accelerometers are located at different positions on such a white board, so that touch points on the board can be identified using the sensors. For the identification of touch points, a TDOA (Time Difference of Arrivals) technique is applied in the algorithm which was implemented in a DSP board (TI 6713 DSK), which can provide a precise touch location by using the cross-correlation function of measured signals from the three accelerometers. Experiment results show that the touch panel system with accelerometers could provide the exact touch location. Thus a novel approach using such accelerometers could be applied to a new touch panel system.

Solution and Estimate to the Angular Velocity of INS Formed only by Linear Accelerometers

  • Junwei, Wu;Jinfeng, Liu;Yunan, Zhang;Na, Yuan
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.103-107
    • /
    • 2006
  • At present, most efforts tend to develop a INS which is only based linear accelerometers, because of the low cost micro-machining gyroscopes lack of the accuracy needed for precise navigation application and possible achieving the required levels of precise for micro-machining accelerometer. Although it was known in theory that a minimum of six accelerometers are required for a complete description of a rigid body motion, and any configuration of six accelerometers (except for a "measure zero " set of six-accelerometer schemes) will work. Studies on the feasible configuration of GF-INS indicate that the errors of angular velocity resolved from the six accelerometers scheme are diverged with time or have multi solutions. The angular velocity errors are induced by the biases together with the position vectors of the accelerometers, therefore, in order to treat with the problem just mentioned, researchers have been doing many efforts, such as the extra three accelerometers or the magnetometers may be taken as the reference information, the extended Kalman filter (EKF) involved to make the angular velocity errors bound and be estimated, and so on. In this paper, the typical configurations of GF-INS are introduced; for each type GF-INS described, the solutions to the angular velocity and the specific force are derived and the characteristic is indicated; one of the corresponding extend Kalman filters are introduced to estimate the angular errors; parts of the simulation results are presented to verify the validity of the equations of angular velocity and specific force and the performance of extend Kalman filter.

  • PDF

Wafer Level Vacuum Packaged Out-of-Plane and In-Plane Differential Resonant Silicon Accelerometers for Navigational Applications

  • Kim, Illh-Wan;Seok, Seon-Ho;Kim, Hyeon-Cheol;Kang, Moon-Koo;Chun, Kuk-Jin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.1
    • /
    • pp.58-66
    • /
    • 2005
  • Inertial-grade vertical-type and lateral-type differential resonant accelerometers (DRXLs) are designed, fabricated using one process and tested for navigational applications. The accelerometers consist of an out-of-plane (for z-axis) accelerometer and in-plane (for x, y-axes) accelerometers. The sensing principle of the accelerometer is based on gap-sensitive electrostatic stiffness changing effect. It says that the natural frequency of the accelerometer can be changed according to an electrostatic force on the proof mass of the accelerometer. The out-of-plane resonant accelerometer shows bias stability of $2.5{\mu}g$, sensitivity of 70 Hz/g and bandwidth of 100 Hz at resonant frequency of 12 kHz. The in-plane resonant accelerometer shows bias stability of $5.2{\mu}g$, sensitivity of 128 Hz/g and bandwidth of 110 Hz at resonant frequency of 23.4 kHz. The measured performances of two accelerometers are suitable for an application of inertial navigation.

Autocalibration Method of Three-axis Micromachined Accelerometers (3축 MEMS 가속도 센서의 이득 및 오프셋 자동 교정법)

  • Song, Ci-Moo
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.9
    • /
    • pp.456-460
    • /
    • 2006
  • This paper deals with a novel autocalibration method of three-axis micromachined accelerometers applied to a new digital intelligent putter for golfers. This putter can help golfers monitor and analyze their putting posture and therefore modify their putting action to get better score and enjoy their lives through golf. The micromachined accelerometers to get information of the motion are the essential part of the putter to measure the three-axis acceleration as accurately as possible. This paper presents an efficient autocalibration algorithm to find the offset and sensitivity of accelerometers by only using the static measurement data at six different positions. The experimental results on the developed putters show the validity of the proposed algorithm for the new smart putter.

High Temperature Sensitivity Characteristics of the Voltage Type High Temperature Piezoelectric Accelerometer (고온용 전압형 가속도센서의 온도특성)

  • Kim, Y.D.;Kim, K.I.;Jung, W.C.;Koh, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1285-1287
    • /
    • 1998
  • Vibration measurements to monitor the condition of machinery and machine elements offers several advantages over traditional methods of nondestructive evaluation. RIST(Research Institute of Industrial Science & Technology) has established a calibration system for accelerometers that measures within a frequency range from 2Hz to 6,300Hz and a temperature range from $-40^{\circ}C$ to $180^{\circ}C$. The calibration procedures are based on the principle of the comparison method. To monitor vibration signals of machinery and machine elements, annular shear type piezoelectric accelerometers employing solid state microelectronics were fabricated. The voltage sensitivity and resonant frequency of fabricated accelerometers was 83mV/g, 23kHz, respectively. This paper discusses the method of fabrication of annular shear type piezoelectric accelerometers and the results of field tests in POSCO(Pohang Iron & Steel Co. LTD.).

  • PDF

Autocalibration Method of Three-axis Micromachined Accelerometers (3축 MEMS 가속도 센서의 이득 및 오프셋 자동 교정법)

  • Song Ci-Moo;Lee Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.302-304
    • /
    • 2006
  • This paper deals with a novel autocalibration method of three-axis micromachined accelerometers applied to a new intelligent putter for golfers. This putter can help golfers monitor and analyze their putting posture and therefore modify their putting action to get better score and enjoy their lives through golf. The micromachined accelerometers to get information of the motion are the essential part of the putter to measure the three-axis acceleration as accurately as possible. This paper presents autocalibration algorithm to find the offset and sensitivity of accelerometers only by using six different static measurement data. The experimental results shows the validity of the algorithm for the new smart putter.

  • PDF

Measuring displacements of a railroad bridge using DIC and accelerometers

  • Hoag, Adam;Hoult, Neil A.;Take, W. Andy;Moreu, Fernando;Le, Hoat;Tolikonda, Vamsi
    • Smart Structures and Systems
    • /
    • v.19 no.2
    • /
    • pp.225-236
    • /
    • 2017
  • Railroad bridges in North America are an integral but aging part of the railroad network and are typically only monitored using visual inspections. When quantitative information is required for assessment, railroads often monitor bridges using accelerometers. However without a sensor to directly measure displacements, it is difficult to interpret these results as they relate to bridge performance. Digital Image Correlation (DIC) is a non-contact sensor technology capable of directly measuring the displacement of any visible bridge component. In this research, a railroad bridge was monitored under load using DIC and accelerometers. DIC measurements are directly compared to serviceability limits and it is observed that the bridge is compliant. The accelerometer data is also used to calculate displacements which are compared to the DIC measurements to assess the accuracy of the accelerometer measurements. These measurements compared well for zero-mean lateral data, providing measurement redundancy and validation. The lateral displacements from both the accelerometers and DIC at the supports were then used to determine the source of lateral displacements within the support system.

Design and Fabrication of 2mm×2mm sized Piezoresistive Accelerometers (2mm×2mm 압저항형 가속도센서 설계 및 제작)

  • Jeon, Yeon-Hwa;Kim, Hyeon-Cheol
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.2
    • /
    • pp.83-88
    • /
    • 2015
  • In this paper, $2mm{\times}2mm$ sized piezoresistive accelerometers were designed and fabricated. Two kinds of accelerometers with different spring structure are designed. One is an accelerometer with 4 beam spring located in the center of the mass, the other is an accelerometer with 8 beam spring located in the vertices of the mass. The modal analysis of the accelerometers and the structural analysis were performed using ANSYS program. The former has the superior sensitivity characteristics of $21.38{\mu}V/V/g$ and the lower offset drift of $154.45ppm/^{\circ}C$ than the latter.

On a Simplified Measurement of Rail Irregularity by Axle-box Accelerometers (축상 진동가속도계를 이용한 궤도불규칙의 간이검측에 관한 연구)

  • Lee, Jun-Seok;Choi, Sung-Hoon;Kim, Sang-Soo;Park, Choon-Soo
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.989-995
    • /
    • 2010
  • This paper is focused on a simplified measurement of rail irregularity by some axle-box accelerometers for high-speed rail condition monitoring with in-service high-speed trains. Generally, the rail condition monitoring has been done by a special railway inspection vehicle with a 10m versine method. But, the monitoring method needs some expensive measurement system, and have been performed only at night due to its speed limit. In this research, a simplified measurement of rail irregularity using axle-box accelerometers is proposed to monitor the rail condition with in-service high-speed trains. The acceleration is measured by using two accelerometers on a axle-box, and stored in an on-board data acquisition system. The displacement is estimated from the acceleration data by a combination of Kalman filter and the frequency selective filter. The estimated results are compared with the measurement from a laser rail inspection system which is near the axle-box. From the comparison, the proposed method shows promise as a tool for the simplified measurement of rail irregularity at high-speed.

  • PDF