• Title/Summary/Keyword: acceleration signal

Search Result 445, Processing Time 0.025 seconds

Double Integration of Measured Acceleration Record using the Concept of Modified Wavelet Transform (수정된 웨이블릿 변환 개념을 이용한 계측 가속도 기록의 이중 적분법)

  • 이형진;박정식
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.5
    • /
    • pp.11-17
    • /
    • 2003
  • It is well known that the double integration of measured acceleration records is one of the most difficult signal processing, particularly in the measurements on civil engineering structures, The measured accelerations of civil engineering structures are usually non-stationary and contain non-gaussian low-frequency noises, which can be significant causes of numerical instabilities in double Integration, For the de-noising of this kind of signals, wavelet transform can be very effective because of its inherent processing features for non-stationary signals, In this paper, the de-noising algorithm for the double integration is proposed using the modified wavelet transform, which is extended version of ordinary wavelet transform to process non-gaussian and low-frequency noises, using the median filter concept, The example studies show that the integration can be improved by the proposed method.

Study of Active Damping Boring Bar Using Piezoelectric Actuator for Small Boring Process (압전 액추에이터를 이용한 소구경 능동 방진 보링바 기초연구)

  • Guo, Yang-Yang;Hong, Jun-Hee;Song, Doo-Sang
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.658-664
    • /
    • 2013
  • In this paper, we present a case study of vibration suppression based on the application of active damping to the small boring process of a boring bar with diameter below ${\Phi}12$. The proposed active damping system consists of an acceleration sensor for real-time monitoring of the vibration signal, a driver for phase control in a computer program, and piezoelectric actuators for damping. In this system, the vibration signals are detected by the acceleration sensor and sent to the computer as an input. The phase shift parameter of the natural frequency of the input signal is sent to the data acquisition board in the computer and calculated by the phase control program. This study confirmed the effectiveness of this damping system, and it opens up the possibility of the development of active damping systems for small boring processes.

Enhancement of Fall-Detection Rate using Frequency Spectrum Pattern Matching

  • Lee, Suhwan;Oh, Dongik;Nam, Yunyoung
    • Journal of Internet Computing and Services
    • /
    • v.18 no.3
    • /
    • pp.11-17
    • /
    • 2017
  • To the elderly, sudden falls are one of the most frightening accidents. If an accident occurs, a prompt action has to be taken to deal with the situation. Recently, there have been a number of attempts to detect sudden falls using acceleration sensors embedded in the mobile devices, such as smart phones and wrist-bands. However, using the sensor readings only, the detection rate of the falls is around 65%. Ordinary daily activities such as running or jumping could not be well distinguished from the falls. In this paper, we describe our attempts on improving the fall-detection rate. We implemented a wrist-band fall detection module, using a three-axis acceleration sensor. With the pattern matching on the fall signal-strength frequency spectrum, in addition to the conventional signal strength measurement, we could improve the detection rate by 9% point. Furthermore, by applying two wrist-bands in the experiment, we could further improve the detection rate to 82%.

Classification of Tire Tread Wear Using Accelerometer Signals through an Artificial Neural Network (인공신경망을 이용한 가속도 센서 기반 타이어 트레드 마모도 판별 알고리즘)

  • Kim, Young-Jin;Kim, Hyeong-Jun;Han, Jun-Young;Lee, Suk
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_2
    • /
    • pp.163-171
    • /
    • 2020
  • The condition of tire tread is a key parameter closely related to the driving safety of a vehicle, which affects the contact force of the tire for braking, accelerating and cornering. The major factor influencing the contact force is tread wear, and the more tire tread wears out, the higher risk of losing control of a vehicle exits. The tire tread condition is generally checked by visual inspection that can be easily forgotten. In this paper, we propose the intelligent tire (iTire) system that consists of an acceleration sensor, a wireless signal transmission unit and a tread classifier. In addition, we also presents classification algorithm that transforms the acceleration signal into the frequency domain and extracts the features of several frequency bands as inputs to an artificial neural network. The artificial neural network for classifying tire wear was designed with an Multiple Layer Perceptron (MLP) model. Experiments showed that tread wear classification accuracy was over 80%.

Case Study of Intermittent Poor Acceleration Fault Diagnosis by Brake Switch Fault (브레이크 스위치 결함에 의한 간헐적인 가속불량 현상의 고장진단 사례연구)

  • Kim, Sung Mo;Jo, Haeng Deug
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.2
    • /
    • pp.203-210
    • /
    • 2015
  • This paper investigates the failure of a car with a 2.5-liter CRDi engine of the Hyundai Company. The failure is caused by intermittent poor acceleration while driving. To analyze the cause, we investigated the air intake volume, the fuel injection, and the air-fuel ratio, which were determined to be normal. The brake switch signal error was discovered while analyzing the function that limits the output of the engine. While investigating the cause, we discovered the corrosion of the pins on the connector of the brake switch. We determined that it was generated by soapy water flowing in the solar film. Therefore, the cause of the failure was the brake switch signal errors. Additionally, we determined that ECM was the normal fail-safe mode that implemented the override device for safety during normal acceleration. Based on these results, further solar film experiments must be conducted to fully elucidate the causes.

A Two-step Kalman/Complementary Filter for Estimation of Vertical Position Using an IMU-Barometer System (IMU-바로미터 기반의 수직변위 추정용 이단계 칼만/상보 필터)

  • Lee, Jung Keun
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.202-207
    • /
    • 2016
  • Estimation of vertical position is critical in applications of sports science and fall detection and also controls of unmanned aerial vehicles and motor boats. Due to low accuracy of GPS(global positioning system) in the vertical direction, the integration of IMU(inertial measurement unit) with the GPS is not suitable for the vertical position estimation. This paper investigates an IMU-barometer integration for estimation of vertical position (as well as vertical velocity). In particular, a new two-step Kalman/complementary filter is proposed for accurate and efficient estimation using 6-axis IMU and barometer signals. The two-step filter is composed of (i) a Kalman filter that estimates vertical acceleration via tilt orientation of the sensor using the IMU signals and (ii) a complementary filter that estimates vertical position using the barometer signal and the vertical acceleration from the first step. The estimation performance was evaluated against a reference optical motion capture system. In the experimental results, the averaged estimation error of the proposed method was 19.7 cm while that of the raw barometer signal was 43.4 cm.

A Study on Improvement of Aiming ability using Disturbance Measurement in the Firing Vehicle (사출 차량에서의 외란을 이용한 정밀 지향성 향상 연구)

  • Yoo, Jin-Ho;Lee, Dong-Ju
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.2
    • /
    • pp.62-70
    • /
    • 2007
  • The aiming ability is a to improve accuracy performance of the firing vehicle. This paper describes the detection method of chatter vibration using disturbance acceleration in the pointing structure. In order to analysis vibration trends of the pointing system occurred during vehicle drive, acceleration data was processed by using data processing algorithm with moving average and Hilbert transform. Specific mode constants of acceleration were obtained under various disturbances. Vehicle velocity, road condition, property of pointing structure were considered as factors which make change of vibration trend in vehicle dynamics. Finally, back propagation neural networks have been applied to the pattern recognition for the classification of vibration signal in various driving conditions. Results of signal processing were compared and analysed.

Design of a Gimbal-Structured Micro Gyroscope and Signal Processing Part

  • Song, J.W.;Lee, J.G.;Kim, W.T. Sung;Lim, H.T.;Kim, Y.K.;Kim, T. Kang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.167.3-167
    • /
    • 2001
  • In this paper, a single degree-of freedom gimbal-structured micro gyroscope and signal processing part including capacitive sensing circuits and filters are designed, fabricated and experimented. We use capacitive sensing method with excitation signal, i.e. sensing excitation signal, to measure the displacement of the moving plate. So, Sensing Output Signal is modulated twice by the excitation signal and driving signal, which is profitable to decouple the driving and sensing mode, to reduce the effect of the acceleration, and to curtail the noises due to parasitic capacitance and driving signal. To reduce driving noises and to improve linearity, the excitation signals and driving signals are modified. Through frequency response analyses ...

  • PDF

Speed control of AC servo system using a sliding control techniques (슬라이딩 제어기법을 이용한 교류 서보 시스템의 속도제어)

  • Lee, Je-Hie;Huh, Uk-Youl
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.2
    • /
    • pp.115-120
    • /
    • 1996
  • In this paper, a sliding mode controller which is characterized by high accuracy, fast response and robustness is applied to speed control of AC-SERVO motor. The control input is changed to the continuous one in the boundary layer to reduce the chattering phenomenon, and the boundary layer converges to zero when the state variables of system reach to steady state values. The integral compensator is added to reduce steady state error and to provide the continuous torque reference. The acceleration which is necessary for the sliding plane is estimated by an obsever. Sliding surface is included in control input to enhance the robustness and transient response without increasing sliding mode controller gain. The proposed controller is implemented by DSP(digital signal processor). The effectiveness of the proposed scheme is demonstrated through experimental works.

  • PDF

A Study on the Linear Motor Control System (니리어모터 이송계 제어 특성분석에 관한 연구)

  • Yoo, Song-Min
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.466-471
    • /
    • 2003
  • In order to analyze linear motor driven feed system, preliminary studies have been conducted focusing on the performance evaluation of the system based on the various combination of control gain along with acceleration. Tentative simulation revealed that due to the complexity of control system reduced number of control condition is recommended. Actual machining process with conventional feed system using endmill tool was employed as a preliminary study. Several sensing methods including AE, acceleration sensors and tool dynamometer were used. Results revealed the consistency in AE and cutting resistance. There were inconsistent empirical results in accelerometer probably due to the insensitivity of the sensor signal with respect to the experimental system

  • PDF