Browse > Article
http://dx.doi.org/10.5000/EESK.2003.7.5.011

Double Integration of Measured Acceleration Record using the Concept of Modified Wavelet Transform  

이형진 (창원대학교 토목공학과)
박정식 (창원대학교 토목공학과)
Publication Information
Journal of the Earthquake Engineering Society of Korea / v.7, no.5, 2003 , pp. 11-17 More about this Journal
Abstract
It is well known that the double integration of measured acceleration records is one of the most difficult signal processing, particularly in the measurements on civil engineering structures, The measured accelerations of civil engineering structures are usually non-stationary and contain non-gaussian low-frequency noises, which can be significant causes of numerical instabilities in double Integration, For the de-noising of this kind of signals, wavelet transform can be very effective because of its inherent processing features for non-stationary signals, In this paper, the de-noising algorithm for the double integration is proposed using the modified wavelet transform, which is extended version of ordinary wavelet transform to process non-gaussian and low-frequency noises, using the median filter concept, The example studies show that the integration can be improved by the proposed method.
Keywords
wavelet transform; de-noising; measured acceleration; double integration; non-stationary signal;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Donoho, D. L. and Johnstone, I. M., “Ideal Spatial Adaptation by Wavelet Shrinkage,” Biometrika, Vol. 81, 1994, pp. 425-455.   DOI   ScienceOn
2 Donoho, D. L. and Johnstone, I. M., “Adapting to Unknown Smoothness Via Wavelet Shrinkage,” J. Amer. Statist. Assoc., Vol. 90, 1995, pp. 1200-1244.   DOI   ScienceOn
3 이선구, 이성우, 이문택, “교량 진동특성 분석을 위한 실측 가속도의 적분”, 전산구조공학회논문집, 제9권, 제4호, 1996, pp. 107-115.   과학기술학회마을
4 이호철, 김윤영, 이용욱, “모드형상의 웨이블릿 변환을 이용한 보의 결함진단”, 한국소음진동공학회, 춘계학술대회논문집, 1999, pp. 430-435.
5 김윤영, 홍진철, 이남용, “수정된 웨이블렛 축소 기법을 이용한 전달함수의 추정”, 한국소음진동공학회, 제10권, 제5호, 2000, pp. 769-774.   과학기술학회마을
6 Amara Graps, “An Introduction to Wavelets,” Computational Science and Engineering, Vol. 2, No. 2, IEEE, 1995.   DOI   ScienceOn
7 정범석, 이외득, “응답변환알고리즘을 이용한 동적변위응답의 추정”, 대한토목학회논문집, 제20권, 제4-A호, 2000, pp. 535-544.   과학기술학회마을
8 양경택, “이동하중을 받는 보의 변위응답 산정을 위한 가속도신호의 적분상 문제점”, 전산구조공학회논문집,제11권, 제4호, 1998, pp. 135-146.   과학기술학회마을
9 최병선, Wavelet 해석, 세경사, 2001.
10 Mallat, S. G., A Wavelet Tour Of Signal Processing, Academic Press, USA, 1998.
11 Daubechies,I. “Ten Lectures on Wavelets,” SAIM, Philadelphia, PA, 1992.
12 박창호, 이동근, “주파수 영역에서의 가속도 기록 보정”. 대한토목학회논문집, 제12권, 제4호, 1992, pp. 71-79.