• Title/Summary/Keyword: accelerated pavement test

Search Result 33, Processing Time 0.02 seconds

Characteristics of Leachate from Blast Furnace Slag and Its Impacts on Environment (고로(高爐) 슬래그 침출수(浸出水)의 특성(特性)과 환경(環境)에 미치는 영향(影響))

  • Choi, Eui So;Kwon, Soo Youl;Lee, E.C.;Park, W.M.
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.3
    • /
    • pp.55-60
    • /
    • 1987
  • Impacts on ground water quality, growth of crops, and degree of corrosion due to the leachate produced from the contact of rain water with blast furnace slag as an aggragate used for roadway pavement were evaluated. Results from slag and soil leaching tests indicated pH, $SO_4$, $Ca^{{+}{+}}$ and $Mg^{{+}{+}}$ concentrations of ground water could be increased due to the use of slag, and pot test suggested slag would not adversely affect growth of Raphanus Satius L niger. Accelerated corrosion test revealed that slag leachate had a tendency to increase corrosion on cast iron at the beginning, however the degree of corrosion became similar to that experienced in soil after about 50 days at 50 degrees in centigrade.

  • PDF

Characteristics of Alkali-Silica Reaction according to Types and Substitution Ratios of Mineral Admixtures in Korea (국내 광물성 혼화재의 종류 및 혼입률에 따른 알칼리-실리카 반응 특성)

  • Kim, Seong-Kwon;Hong, Seung-Ho;Hur, In;Yun, Kyong-Ku
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.1
    • /
    • pp.49-55
    • /
    • 2011
  • The distresses of alkali-silica reaction (ASR) was recently reported at highway cement concrete pavement in Korea, which showed typical cracking and spalling patterns of ARS. Korea is was no longer safe zone against ASR, needding to find a control methodology against ASR. The purpose of this research was to provide a control methodology against ASR using mineral admixtures through a series of laboratory test program. Laboratory works included the accelerated mortar bar test (AMBT) by ASTM C 1260 regulation with five types of aggregate and three types of mineral admixtures (fly ash, ground granulated blast-furnace slag and silica fume). The result of ASTM C 1260 test for five types of aggregates without mineral admixtures showed that Siltstone and Mudstone were found to be "reactive." Tuff and Andesite-1 were found to be "possiblely reactive." In case of concrete mixed with 10, 20, and 30% fly ash, all specimens except Mudstone mixed with 10% FA were found to be "non-reactive". In cases of concrete mixed with 30, 40, and 50% ground granulated blast-furnace slag and 5, 7.5, and 10% silica fume, all specimens were found to be "non-reactive." These results could be selectively applied in constructions in Korea.

Properties of Temperature Reduction of Cooling Asphalt Pavements Using High-Reflectivity Paints (고반사 도료를 사용한 차열성 아스팔트 도로포장의 온도저감특성)

  • Hong, Chang Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.317-327
    • /
    • 2013
  • Air pollution and artificial heat of urban areas have caused the urban heat island in which asphalt pavements absorb solar heat during the daytime and release the heat at night. Hence, in order to improve the environment of urban areas, it is necessary to examine cooling pavements that can reduce heat on road pavements in urban areas. The application of temperature insulation paints on road pavements require to reduce black brightness for visibility, to increase the reflection rate of infrared light and minimize the reflection rate of visible light. In the study, one part of Acrylic-emulsion was used as a main binder, and the changes in black brightness and the changes of addition ratio (0%, 15%, 30%) of hollow ceramics, as well as kinds of paints (carbon black pigment, mixed mineral pigment) were selected as the main experimental factors. The performance of temperature reduction of cooling pavements was analyzed through the reflection rate of spectrum, the reflection rate of solar heat, and the lamp test. Abrasion resistance, UV accelerated weather resistance, and sliding resistance were tested in real situations. In addition, the performance of heat reduction of testing pavements covered with high-reflection paints was analyzed by using an infrared camera. As the test results, when using mixed mineral paints and hollow ceramic of 30%, the reflection rate of spectrum was 43% in the area of near-infrared ray and 17% in the area of visible light at black brightness of $L^*$=42.89 and the reflection rate of solar heat was 27.5%. Total color difference was ${\Delta}E$=0.27 in the test of UV Accelerated Weather Resistance, indicating almost no changes in color. BPN was more than 53 when scattering #2 and #4 silica sand of more than $0.12kg/m^2$. In Taber's abrasion resistance test, abrasion loss was up to 86.4mg at 500 rotations. The performance of heat reduction was evaluated using an infrared camera at the test section applying high-reflection paints to asphalt pavements, in which the results showed that the temperature was reduced by $12.7^{\circ}C$ on CI-30-40 cooling pavements ($L^*$=38.76) and by $14.2^{\circ}C$ on CI-30-60 cooling pavements ($L^*$=57.12).