• 제목/요약/키워드: accelerated heat-treatment

검색결과 82건 처리시간 0.021초

AI-Li제 합금의 가공열처리에 따른 조직과 기계적성질의 변화 (The Variation of Microstructures and Mechanical Properties by Thermomechanical Treatment in Al-Li Based Alloys)

  • 김기원;우기도;이광로;이민상;이민호;황호을
    • 열처리공학회지
    • /
    • 제4권3호
    • /
    • pp.13-20
    • /
    • 1991
  • The present work was aimed to examine the variation of precipitations and mechanical properties by thermomechanical treatments (TMT) in Al-2.19 wt%Li and Al-2.0 wt%Li-0.11 wt%Zr alloys. This study was performed by TEM, SEM observation, DSC, electrical resistance measurement, hardness and tensile strength measurement. First peak of resistivity aged at $90^{\circ}C$ was caused by precipitation of ${\delta}^{\prime}$-precursor phase, and second peak was caused by precipitation of ${\delta}^{\prime}$ phase. According to this result, the precipitation process of Al-2.19 wt%Li alloy was as follow : $SSSS{\rightarrow}{\delta}^{\prime}$-precursor phase ${\rightarrow}{\delta}^{\prime}$ (Coherent ${\rightarrow}$ Semi-coherent) ${\rightarrow}{\delta}$. In a Al-2.0 wt%Li-0.11 wt%Zr ternary alloy, the first peak of resistivity was appeared at initial aging heat-treatment. It is result from exsistant of ${\delta}^{\prime}$-precursor phase. The effect acceleration in a binary alloy was not appeared and the over-aging ternary alloy was accelerated with increase of the reduction rate. It is caused by combination effect of ${\delta}^{\prime}$ and composite phase.

  • PDF

벼 유전자원의 저장수명 예측을 위한 건열처리 효과 (Dry-heat Treatment Effect for Seed Longevity Prediction in Rice Germplasm)

  • 나영왕;백형진;최유미;이석영;이정로;정종욱;박용진;김석현
    • 한국작물학회지
    • /
    • 제59권3호
    • /
    • pp.230-238
    • /
    • 2014
  • 벼 유전자원의 효율적인 보존관리를 위해 종자수명 예측방법을 규명하고자 본 시험을 수행하였다. 효과적인 종자수명 예측 방법을 규명하기 위해 전년도에 수확한 벼 106품종을 대상으로 인위노화처리 방법인 노화촉진(AA)처리, 퇴화조절(CD) 및 건열처리(DHT)를 실시하고, $4^{\circ}C$ 저장고에 26.5년간 보존된 벼 유전자원 3,066점의 종자수명 자료와 비교분석한 결과는 다음과 같다. 벼 유전자원의 효과적인 종자수명 예측 방법으로는 건열처리($90^{\circ}C$, 36시간)였다. 전년도 수확한 벼 품종의 건열처리 후 발아율 성적을 사분위수로 4개의 분류군으로 나누었을 때, 분류군별로 분포하는 벼 생태형별 품종 비율이 $4^{\circ}C$ 저장고 보존자원의 최종발아율에 따른 4개 분류군의 분포비와 흡사하였다. 갱신 된 벼 유전자원을 $4^{\circ}C$ 저장고 보존시 효율적인 첫 활력모니터링 시점은 4개 분류군 중 I군에 속하는 자원은 저장 후 14년, II군, III군, IV군에 속한 자원들은 각각 저장 후 17, 20, 45년을 기준으로 하여 설정할 수 있겠다. 건열처리는 벼 유전자원 종자수명 예측뿐만 아니라 종자은행에서 보존자원의 효율적인 활력검정 주기 설정 및 갱신 주기 결정에도 도움이 되겠다.

10%Cr 페라이트계 합금에서 라베스상의 석출거동에 관한 연구 (Precipitation Behavior of Laves Phase in 10%Cr Ferrite System Alloy)

  • 김익수;강창용;배동수
    • 열처리공학회지
    • /
    • 제12권1호
    • /
    • pp.21-30
    • /
    • 1999
  • The present study were investigated changes of precipitation behaviour of laves phase in ferrite single phase and ferrite-martensite dual phase and precipitation of laves phase under stress. Hardness changes in ferrite phase appeared two hardness peaks by precipitation of initial fine precipitator and laves phase in 3Mo-0.3Si and 3Mo-0.3Si-C specimens, respectively. Hardness changes in martensite phase of 3Mo-0.3Si-C specimen was lower in the initial stage of aging by carbide precipitation and after this, increased by re-hardening due to precipitation of laves phase. In the ferrite phase, laves phase was mainly precipitated, whereas in the martensite phase, carbide was preferentially formed during the initial stage of aging and with increasing aging time, laves phase and carbide were simultaneously precipitated by precipitation of laves phase at around carbide. In the ferrite-martensite interface, laves phase was mainly precipitated and carbide was mainly formed at boundary of lath martensite than grain boundary. Adding the stress in aging, fine precipitator of inital precipitation of laves phase precipitated in (100) of perpendicular to tensile direction and has grown to only followed<010>direction and also, volume fraction of laves phase increased. Consequently, the stress added was accelerated initial precipitation of laves phase.

  • PDF

질소 이온 주입시킨 7050Al합금의 표면 미세구조 변화와 저주기 피로거동 (The Surface Modification and Low Cycle Fatigue Behavior of N+ion Implantated 7050Al Alloy)

  • 이창우;권숙인
    • 열처리공학회지
    • /
    • 제7권4호
    • /
    • pp.307-317
    • /
    • 1994
  • The surf ace microstructure modification by $N^+$ ion implantation into 7050Al alloy and its low cycle fatigue behavior were investigated. Ion implantation method is to physically implant accelerated ions to the surface of a substrate. High dose of nitrogen($5{\times}10^{17}ions/cm^2$) were implanted into 7050Al alloy using current density of accellerating voltage of 100KeV. The implanted layers were characterized by Electron Probe-Micro Analysis(EPMA), Auger Elecron Spectroscopy(AES), X-Ray Diffraction(XRD), X-Ray Photoelectron Spectroscopy(XPS), and Transmission Electron Microscopy(TEM). The experimental results were compared with computer simulation data. It was shown that AlN was formed to 4500 ${\AA}$ deep. The low cycle fatigue life of the $N^4$ion modified material was prolonged by about three times the unimplanted one. The improved low cycle fatigue life was attributed to the formation of AlN and the damaged region on the surface by $N^+$ ion implantation.

  • PDF

Fe-17wt%Mn 합금의 진동감쇠능에 미치는 탄소와 티타늄 첨가의 영향 (Effects of carbon content and Titanium Addition on Damping Capacity in Fe-17wt%Mn Alloy)

  • 백승한;김정철;지광구;신명철;최종술
    • 열처리공학회지
    • /
    • 제9권1호
    • /
    • pp.53-61
    • /
    • 1996
  • Effects of carbon and Ti on damping capacity are investigated in an Fe-17%Mn alloy. The suppressive force of carbon against ${\gamma}{\rightarrow}{\varepsilon}$ transformation increases linearly with an increase in its content, lowering Ms temperature and volume fraction of ${\varepsilon}$ martensite. Carbon deteriorates damping capacity by reducing the interfacial area of damping sources and mobility of the boundaries contributing to anelastic deformation. The reduction in damping capacity is accelerated when carbon-containing alloy is aged at higher temperatures above room temperature. The effect of Ti on damping capacity is found to be benificial in carbon-containing alloy, which is attributed to the depletion of carbon solute due to the formation of TiC.

  • PDF

저탄소 1.1 Mn 강의 인장 및 충격 성질에 미치는 V첨가의 영향 (Effects of V Addition on Tensile and Impact Properties in Low Carbon 1.1Mn Steels)

  • 양형렬;조기섭;최정현;심호섭;이건배;권훈
    • 열처리공학회지
    • /
    • 제21권6호
    • /
    • pp.281-286
    • /
    • 2008
  • In the 1.1 Mn steel containing boron, effects of the 0.1 V addition and processing condition were studied. In the $550^{\circ}C$ interrupted cooling where the main structure is (ferrite + pearlite), the impact toughness decreased as the tensile strength increased by the 0.1 V addition. The $800^{\circ}C$ rolling including two step rolling of $800-770^{\circ}C$, exhibited better strength-toughness balance, as compared to the $770^{\circ}C$ rolling. This seems to be kind of conditioning effect at higher temperature, e.g., more uniform deformation effect. In the accelerated cooling after the $750^{\circ}C$ rolling in a dual phase range, the impact toughness was enhanced, despite a large increase in tensile strength. This is believed to be related to the change of main structure from (ferrite + pearlite) to (ferrite + bainite).

최종열처리와 용접Zircaloy-4의 방사선조사 성장에 미치는 영향 (The Effect of Final Heat Treatment and Welding on Irradiation Growth of Zircaloy-4)

  • 임갑순;한정호;정용환;이덕현;박기성;김영석;김선진
    • 한국재료학회지
    • /
    • 제3권1호
    • /
    • pp.65-71
    • /
    • 1993
  • 최종열처리와 용접이Zircaloy-4의 방사선조사 성장에 미치는 영향을 조사하였다. 본 연구에서는 중성자 조사에 대한 모의시험으로 3.5MeV로 가속된 양심자 빔을 조사량 9.8 ${\times}{10^{21}}$p/$m^2$까지 시편에 조사하였다. 본 연구에 사용된 시편중znnealed 시편의 방사선조사성장이 가장 컸으며 ${\beta}$-quenched 시편의 방사선조사 성장이 제일 작았다. 방사선조사 성장의 크기는 용접을 함에 따라 감소하였다. 최종열처리 조건의 차이에 의한 방사선조사 성장크기에서의 차이와 용접이 방사선조사 성장에 미치는 영향을 ray 회절시험으로부터 계산된 Kearns number, f,를 이용하여 정량적으로 분석하였다.

  • PDF

GaMnN 박막의 중성자 조사 및 열처리 효과 (Effects of Neutron Irradiation and Heat Treatment for GaMnN)

  • 이계진;강희수;김정애;우부성;김경현;김도진;김봉구;강영환;유승호;김창균;김창수;김효진;임영언
    • 한국재료학회지
    • /
    • 제13권7호
    • /
    • pp.409-414
    • /
    • 2003
  • The room-temperature operating semiconductor GaMnN is known to be improved in its magnetic property when a highly conductive precipitate $Mn_3$GaN exists. Therefore, it is useful to investigate the behavior of the precipitate through heat treatments for further improvement of its magnetic property. Furthermore, neutron irradiation may further influence the behavior of the precipitates, and consequently, their effects on the magnetization. With the heat treatment, $Mn_3$GaN decomposed and a new phase of $Mn_3$Ga has generated. The kinetics was accelerated by neutron irradiation, which might generate defects that can help the decomposition of N and/or the formation of $Mn_3$Ga. The increase and decrease of the magnetization of the heat-treated GaMnN thin films were explained consistently by the behavior of the precipitates.

Ti3C2Tx MXene의 열처리에 따른 구조적, 전기적 특성 변화 (Changes in the Structural and Electrical Properties of Ti3C2Tx MXene Depending on Heat Treatment)

  • 김자현;노진서
    • 한국재료학회지
    • /
    • 제32권5호
    • /
    • pp.264-269
    • /
    • 2022
  • Ti3C2Tx MXene, which is a representative of the two-dimensional MXene family, is attracting considerable attention due to its remarkable physicochemical and mechanical properties. Despite its strengths, however, it is known to be vulnerable to oxidation. Many researchers have investigated the oxidation behaviors of the material, but most researches were conducted at high temperatures above 500 ℃ in an oxidation-retarding environment. In this research, we studied changes in the structural and electrical properties of Ti3C2Tx MXene induced by low-temperature heat treatments in ambient conditions. It was found that a number of TiO2 particles were formed on the MXene surface when it was mildly heated to 200 ℃. Heating the material to higher temperatures, up to 400 ℃, the phase transformation of Ti3C2Tx MXene to TiO2 was accelerated, resulting in a TiO2/Ti3C2Tx hybrid. Consequently, the metallic nature of pure Ti3C2Tx MXene was transformed to semiconductive behavior upon heat-treating at ≥ 200 ℃. The results of this research clearly demonstrate that Ti3C2Tx MXene may be easily oxidized even at low temperatures once it is exposed to air.

육성용접된 Inconel 718 합금의 마찰교반을 이용한 개질처리 효과 (Effect of Surface Modification by Friction Stir Process on Overlap Welded Inconel 718 Alloy)

  • 송국현;홍도형;양병모
    • 한국재료학회지
    • /
    • 제23권9호
    • /
    • pp.501-509
    • /
    • 2013
  • To evaluate the development of the microstructure and mechanical properties on surface modified and post-heattreated Inconel 718 alloy, this study was carried out. A friction stir process as a surface modification method was employed, and overlap welded Inconel 718 alloy as an experimental material was selected. The friction stir process was carried out at a tool rotation speed of 200 rpm and tool down force of 19.6-39.2 kN; post-heat-treatment with two steps was carried out at $720^{\circ}C$ for 8 h and $620^{\circ}C$ for 6 h in vacuum. To prevent the surface oxidation of the specimen, the method of using argon gas as shielding was utilized during the friction stir process. As a result, applying the friction stir process was effective to develop the grain refinement accompanied by dynamic recrystallization, which resulted in enhanced mechanical properties as compared to the overlap welded material. Furthermore, the post-heat-treatment after the friction stir process accelerated the formation of precipitates, such as gamma prime (${\gamma}^{\prime}$) and MC carbides, which led to the significant improvement of mechanical properties. Consequently, the microhardness, yield, and tensile strengths of the post-heat-treated material were increased more than 110%, 124% and 85 %, respectively, relative to the overlap welded material. This study systematically examined the relationship between precipitates and mechanical properties.