DOI QR코드

DOI QR Code

Dry-heat Treatment Effect for Seed Longevity Prediction in Rice Germplasm

벼 유전자원의 저장수명 예측을 위한 건열처리 효과

  • Na, Young-Wang (Research Policy Bureau, Rural Development Administration) ;
  • Baek, Hyung-Jin (National Academy of Agricultural Science, Rural Development Administration) ;
  • Choi, Yu-Mi (National Academy of Agricultural Science, Rural Development Administration) ;
  • Lee, Sok-Young (National Academy of Agricultural Science, Rural Development Administration) ;
  • Lee, Jung-Ro (National Academy of Agricultural Science, Rural Development Administration) ;
  • Chung, Jong-Wook (National Academy of Agricultural Science, Rural Development Administration) ;
  • Park, Yong-Jin (College of Industrial Science, Kongju National University) ;
  • Kim, Seok-Hyeon (College of Agriculture and Life Sciences, Gyeongsang National University)
  • 나영왕 (농촌진흥청 연구정책국) ;
  • 백형진 (농촌진흥청 국립농업과학원) ;
  • 최유미 (농촌진흥청 국립농업과학원) ;
  • 이석영 (농촌진흥청 국립농업과학원) ;
  • 이정로 (농촌진흥청 국립농업과학원) ;
  • 정종욱 (농촌진흥청 국립농업과학원) ;
  • 박용진 (공주대학교 산업과학대학) ;
  • 김석현 (경상대학교 농업생명과학대학)
  • Received : 2014.05.28
  • Accepted : 2014.06.19
  • Published : 2014.09.30

Abstract

The purpose of this study was to develop the cost-effective and efficiency seed longevity prediction method of rice (Oryza sativa L.) germplasm for viability monitoring. To find an optimum predicting method for rice seed longevity at genebank, an accelerated ageing (AA) test, a controlled deterioration (CD) test and a dry-heat treatment (DHT) were conducted to the four groups of rice germplasm based on ecotype, such as Indica, Japonica, Javanica and Tongil type. Among the three artificial aging treatments, the dry-heat treatment of 36 hours at $90^{\circ}C$ is suggested as a routine predictive test method of rice germplasm longevity at a genebank. The distribution of germination rate on 3,066 accessions which conserved 26.5 years at $4^{\circ}C$ showed similar trend with the result of distribution by dry-heat treatment at $90^{\circ}C$ on 36 hours using 106 accessions of rice selected samples which composed four ecotype groups. The results show that the dry-heat treatment affect not only predicting the rice seed longevity but also determining effective interval for monitoring germination of rice germplasm in genebanks.

벼 유전자원의 효율적인 보존관리를 위해 종자수명 예측방법을 규명하고자 본 시험을 수행하였다. 효과적인 종자수명 예측 방법을 규명하기 위해 전년도에 수확한 벼 106품종을 대상으로 인위노화처리 방법인 노화촉진(AA)처리, 퇴화조절(CD) 및 건열처리(DHT)를 실시하고, $4^{\circ}C$ 저장고에 26.5년간 보존된 벼 유전자원 3,066점의 종자수명 자료와 비교분석한 결과는 다음과 같다. 벼 유전자원의 효과적인 종자수명 예측 방법으로는 건열처리($90^{\circ}C$, 36시간)였다. 전년도 수확한 벼 품종의 건열처리 후 발아율 성적을 사분위수로 4개의 분류군으로 나누었을 때, 분류군별로 분포하는 벼 생태형별 품종 비율이 $4^{\circ}C$ 저장고 보존자원의 최종발아율에 따른 4개 분류군의 분포비와 흡사하였다. 갱신 된 벼 유전자원을 $4^{\circ}C$ 저장고 보존시 효율적인 첫 활력모니터링 시점은 4개 분류군 중 I군에 속하는 자원은 저장 후 14년, II군, III군, IV군에 속한 자원들은 각각 저장 후 17, 20, 45년을 기준으로 하여 설정할 수 있겠다. 건열처리는 벼 유전자원 종자수명 예측뿐만 아니라 종자은행에서 보존자원의 효율적인 활력검정 주기 설정 및 갱신 주기 결정에도 도움이 되겠다.

Keywords

References

  1. Chung, J. W. and Y. J. Park. 2009. Genetic diversity and population structure of Korean rice core collection. Korean J. Intl. Agri. 21(4) : 282-288.
  2. Chung, J. W., S. K. Jong, J. H. Lee, K. H. Ma, H. K. Kang, J. R. Lee, Y. J. Park, C. Y. Kim, J. H. Kang, E. G. Cho, and A. Dixit. 2004. Assessment of genetic diversity among world collection of rice cultivars using microsatellite markers. Korean J. Breeding Sci. 36(11) : 316-317.
  3. Clear, R. M., S. K. Patrick, R. Wallis, and T. K. Turkington. 2002. Effect of dry heat treatment on seed-borne Fusarium graminearum and other cereal pathogens. Canadian J. Plant Pathol. 24(4) : 489-498. https://doi.org/10.1080/07060660209507038
  4. Dadlani, M. and D. V. Seshu. 1990. Effect of wet and dry heat treatment on rice seed germination and seedling vigor. Int. Rice Res. Newsl. 15(2) : 21-22.
  5. Delouche, J. C. and C. C. Baskin. 1973. Accelerated aging techniques for predicting the relative storability of seed lots. Seed Sci. & Technol. 1 : 427-452.
  6. Hampton, J. G. and D. M. TeKrony. 1995. Handbook of Vigour Test Methods. ISTA, Zurich. p. 117.
  7. FAO/IPGRI, 1994. Genebank Standards. Food and Agriculture Organization of the United Nations, Rome, International Plant Genetic Resources Institute, Rome.
  8. Ibrahim, A., D. M. TeKrony, and D. B. Egli. 1993. Accelerated ageing techniques for evaluating sorghum seed vigour. J. Seed Technol. 17 : 29-37.
  9. ISTA. 1999. International Seed Testing Association. Seed Sci. & Technol. 27 supplement. p. 333.
  10. Kim, S. H., L. O. Copeland, and R. Baalbaki. 1987a. The use of multiple tests in predicting the vigor of soybean seeds. Korean J. Crop Sci. 32 : 268-276.
  11. Kim, S. H., Z. R. Choe, and J. H. Kang. 1987b. Vigor determination in barley seeds by the multiple criteria. Korean J. Crop Sci. 32 : 417-424.
  12. Kim, S. H., Z. R. Choe, J. H. Kang, L. O. Copeland, and S. G. Elias. 1994. Multiple seed vigour indices to predict field emergence and performance of barley. Seed Sci. & Technol. 22 : 59-68.
  13. Kim, S. H., M. W. Park, S. I. Shim, J. S. Chung, and Y. W. Na. 2013. Verification of several seed vigor test methods to predict field emergence of sorghum (Sorghum bicolor L. Moench). Korean J. Intl. Agri. 25(1) : 56-61. https://doi.org/10.12719/KSIA.2013.25.1.056
  14. Lee, S. Y., J. H. Lee, and T. O. Kwon. 2002. Varietal differences in seed germination and seedling vigor of Korean rice varieties following dry heat treatment. Seed Sci. & Technol. 30 : 311-321.
  15. Lee, S. Y., J. H. Ahn, H. J. Kim, and M. Y. Eun. 2006. Relationships among viviparous germination, dry-heat tolerance and seed longevity in Milyang 23/Gihobyeo RILs. J. Bio-Environment Control. 15(4) : 421-427.
  16. Matthews, S. 1998. Approaches to the indirect evaluation of germination and vigour. Scientia Agricola. 55 : 62-66.
  17. McDonald, M. B., Jr and B. R Phaneendranath. 1978. A modified accelerated aging seed vigor test for soybean. J. Seed Technol. 3(1) : 27-37.
  18. Na, Y. W., Y. M. Choi, H. J. Baek, S. Y. Lee, J. H. Kang, and S. H. Kim. 2014. Seed longevity of rice germplasm in the National Agrobiodiversity Center. Korean J. Crop Sci. 59(3) : 216-222. https://doi.org/10.7740/kjcs.2014.59.3.216
  19. Nakagawa, A. and T. Yamaguchi. 1989. Seed treatment for control of seed-borne Fusarium roseum on wheat. Japan Agric. Res. Q. 23 : 94-99.
  20. Powell, A. A. and S. Matthews. 1981. Evaluation of controlled deterioration, a new vigour test for small seed vegetables. Seed Sci. & Technol. 9 : 633-640.
  21. Sato, M. 1991. Studies on seed longevity of crops in longterm storage. Bull. Natl. Inst. Agrobiol. Resour. 6 : 95-110.
  22. TeKrony, D. M., D. B. Egli, and D. A. Wickman. 1989. Effect of corn seed vigour on no-tillage field performance: field emergence and stand. Crop Sci. 29 : 1525-1528.
  23. TeKrony, D. M., T. Shande, M. Rucker, and D. B. Egli. 2005. Effect of seed shape on corn germination and vigour during warehouse and controlled environmental storage. Seed Sci. & Technol. 33 : 185-197. https://doi.org/10.15258/sst.2005.33.1.19
  24. Wang, Y. R., J. G. Hampton, and M. J. Hill. 1994. Red clover vigour testing-effects of three test variables. Seed Sci. & Technol. 22 : 99-105.

Cited by

  1. Characterization of Seed Longevity and Stale Flavor of Lipoxygenase-3 Null Rice Line under High Temperature Storage vol.31, pp.1, 2014, https://doi.org/10.12719/ksia.2019.31.1.53