DOI QR코드

DOI QR Code

Changes in the Structural and Electrical Properties of Ti3C2Tx MXene Depending on Heat Treatment

Ti3C2Tx MXene의 열처리에 따른 구조적, 전기적 특성 변화

  • Received : 2022.05.09
  • Accepted : 2022.05.12
  • Published : 2022.05.27

Abstract

Ti3C2Tx MXene, which is a representative of the two-dimensional MXene family, is attracting considerable attention due to its remarkable physicochemical and mechanical properties. Despite its strengths, however, it is known to be vulnerable to oxidation. Many researchers have investigated the oxidation behaviors of the material, but most researches were conducted at high temperatures above 500 ℃ in an oxidation-retarding environment. In this research, we studied changes in the structural and electrical properties of Ti3C2Tx MXene induced by low-temperature heat treatments in ambient conditions. It was found that a number of TiO2 particles were formed on the MXene surface when it was mildly heated to 200 ℃. Heating the material to higher temperatures, up to 400 ℃, the phase transformation of Ti3C2Tx MXene to TiO2 was accelerated, resulting in a TiO2/Ti3C2Tx hybrid. Consequently, the metallic nature of pure Ti3C2Tx MXene was transformed to semiconductive behavior upon heat-treating at ≥ 200 ℃. The results of this research clearly demonstrate that Ti3C2Tx MXene may be easily oxidized even at low temperatures once it is exposed to air.

Keywords

Acknowledgement

This work was supported by the Gachon University research fund of 2021 (GCU-202103820001).

References

  1. J. Tan, S. Li, B. Liu and H.-M. Cheng, Small Struct., 2, 2000093 (2021). https://doi.org/10.1002/sstr.202000093
  2. Y. Wang, B. Niu, X. Zhang, Y. Lei, P. Zhong and X. Ma, ECS J. Solid State Sci. Technol., 10, 047002 (2021). https://doi.org/10.1149/2162-8777/abf2de
  3. A. Iqbal, J. Hong, T. Y. Ko and C. M. Koo, Nano Converg., 8, 9 (2021). https://doi.org/10.1186/s40580-021-00259-6
  4. M. A. J. Rasel, B. Wyatt, M. Wetherington, B. Anasori and A. Haque, J. Mater. Res., 36, 3398 (2021). https://doi.org/10.1557/s43578-021-00373-5
  5. M. Aakyiir, J. A. Oh, S. Araby, Q. Zheng, M. Naeem, J. Ma, P. Adu, L. Zhang and Y. W. Mai, Compos. Sci. Technol., 214, 108997 (2021). https://doi.org/10.1016/j.compscitech.2021.108997
  6. J. L. Hart, K. Hantanasirisakul, A. C. Lang, B. Anasori, D. Pinto, Y. Pivak, J. T. V. Omme, S. J. May, Y. Gogotsi and M. L. Taheri, Nat. Commun., 10, 522 (2019). https://doi.org/10.1038/s41467-018-08169-8
  7. J. Wozniak, M. Petrus, T. Cygan, A. Lachowski, M. Kostecki, A. Jastrzebska, A. Wojciechowska, T. Wojciechowski and A. Olszyna, Materials (Basel), 14, 6011 (2021). https://doi.org/10.3390/ma14206011
  8. B. C. Wyatt, S. K. Nemani and K. Desai, J. Phys.: Condens. Matter, 33, 224002 (2021). https://doi.org/10.1088/1361-648X/abe793
  9. F. Xia, J. Lao, R. Yu, X. Sang, J. Luo, Y. Li and J. Wu, Nanoscale, 11, 23330 (2019). https://doi.org/10.1039/c9nr07236e
  10. D. Shan, J. He, L. Deng, S. Yan, H. Luo, S. Huang and Y. Xu, Results Phys., 15, 102750 (2019). https://doi.org/10.1016/j.rinp.2019.102750
  11. G. Fan, X. Li, C. Xu, W. Jiang, Y. Zhang, D. Gao, J. Bi and Y. Wang, Nanomaterials, 8, 141 (2018). https://doi.org/10.3390/nano8030141
  12. J. Zhu, Y. Tang, C. Yang, F. Wang and M. Cao, J. Electrochem. Soc., 163, A785 (2016). https://doi.org/10.1149/2.0981605jes
  13. J. Low, L. Zhang, T. Tong, B. Shen and J. Yu, J. Catal., 361, 255 (2018). https://doi.org/10.1016/j.jcat.2018.03.009
  14. F. Zhang, Y. Zhou, Y. Zhang, D. Li and Z. Huang, Nanophotonics, 9, 2025 (2020). https://doi.org/10.1515/nanoph-2019-0568
  15. S. Liu, M. Wang, G. Liu, N. Wan, C. Ge, S. Hussain, H. Meng, M. Wang and G. Qiao, Appl. Surf. Sci., 567, 150747 (2021). https://doi.org/10.1016/j.apsusc.2021.150747