• Title/Summary/Keyword: accelerated heat-treatment

Search Result 82, Processing Time 0.026 seconds

The Variation of Microstructures and Mechanical Properties by Thermomechanical Treatment in Al-Li Based Alloys (AI-Li제 합금의 가공열처리에 따른 조직과 기계적성질의 변화)

  • Kim, Ki Won;Woo, Kee Do;Lee, Kwang Ro;Lee, Min Sang;Lee, Min Ho;Hwang, Ho Eul
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.4 no.3
    • /
    • pp.13-20
    • /
    • 1991
  • The present work was aimed to examine the variation of precipitations and mechanical properties by thermomechanical treatments (TMT) in Al-2.19 wt%Li and Al-2.0 wt%Li-0.11 wt%Zr alloys. This study was performed by TEM, SEM observation, DSC, electrical resistance measurement, hardness and tensile strength measurement. First peak of resistivity aged at $90^{\circ}C$ was caused by precipitation of ${\delta}^{\prime}$-precursor phase, and second peak was caused by precipitation of ${\delta}^{\prime}$ phase. According to this result, the precipitation process of Al-2.19 wt%Li alloy was as follow : $SSSS{\rightarrow}{\delta}^{\prime}$-precursor phase ${\rightarrow}{\delta}^{\prime}$ (Coherent ${\rightarrow}$ Semi-coherent) ${\rightarrow}{\delta}$. In a Al-2.0 wt%Li-0.11 wt%Zr ternary alloy, the first peak of resistivity was appeared at initial aging heat-treatment. It is result from exsistant of ${\delta}^{\prime}$-precursor phase. The effect acceleration in a binary alloy was not appeared and the over-aging ternary alloy was accelerated with increase of the reduction rate. It is caused by combination effect of ${\delta}^{\prime}$ and composite phase.

  • PDF

Dry-heat Treatment Effect for Seed Longevity Prediction in Rice Germplasm (벼 유전자원의 저장수명 예측을 위한 건열처리 효과)

  • Na, Young-Wang;Baek, Hyung-Jin;Choi, Yu-Mi;Lee, Sok-Young;Lee, Jung-Ro;Chung, Jong-Wook;Park, Yong-Jin;Kim, Seok-Hyeon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.3
    • /
    • pp.230-238
    • /
    • 2014
  • The purpose of this study was to develop the cost-effective and efficiency seed longevity prediction method of rice (Oryza sativa L.) germplasm for viability monitoring. To find an optimum predicting method for rice seed longevity at genebank, an accelerated ageing (AA) test, a controlled deterioration (CD) test and a dry-heat treatment (DHT) were conducted to the four groups of rice germplasm based on ecotype, such as Indica, Japonica, Javanica and Tongil type. Among the three artificial aging treatments, the dry-heat treatment of 36 hours at $90^{\circ}C$ is suggested as a routine predictive test method of rice germplasm longevity at a genebank. The distribution of germination rate on 3,066 accessions which conserved 26.5 years at $4^{\circ}C$ showed similar trend with the result of distribution by dry-heat treatment at $90^{\circ}C$ on 36 hours using 106 accessions of rice selected samples which composed four ecotype groups. The results show that the dry-heat treatment affect not only predicting the rice seed longevity but also determining effective interval for monitoring germination of rice germplasm in genebanks.

Precipitation Behavior of Laves Phase in 10%Cr Ferrite System Alloy (10%Cr 페라이트계 합금에서 라베스상의 석출거동에 관한 연구)

  • Kim, I.S.;Kang, C.Y.;Bae, D.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.12 no.1
    • /
    • pp.21-30
    • /
    • 1999
  • The present study were investigated changes of precipitation behaviour of laves phase in ferrite single phase and ferrite-martensite dual phase and precipitation of laves phase under stress. Hardness changes in ferrite phase appeared two hardness peaks by precipitation of initial fine precipitator and laves phase in 3Mo-0.3Si and 3Mo-0.3Si-C specimens, respectively. Hardness changes in martensite phase of 3Mo-0.3Si-C specimen was lower in the initial stage of aging by carbide precipitation and after this, increased by re-hardening due to precipitation of laves phase. In the ferrite phase, laves phase was mainly precipitated, whereas in the martensite phase, carbide was preferentially formed during the initial stage of aging and with increasing aging time, laves phase and carbide were simultaneously precipitated by precipitation of laves phase at around carbide. In the ferrite-martensite interface, laves phase was mainly precipitated and carbide was mainly formed at boundary of lath martensite than grain boundary. Adding the stress in aging, fine precipitator of inital precipitation of laves phase precipitated in (100) of perpendicular to tensile direction and has grown to only followed<010>direction and also, volume fraction of laves phase increased. Consequently, the stress added was accelerated initial precipitation of laves phase.

  • PDF

The Surface Modification and Low Cycle Fatigue Behavior of N+ion Implantated 7050Al Alloy (질소 이온 주입시킨 7050Al합금의 표면 미세구조 변화와 저주기 피로거동)

  • Lee, C.W.;Kwun, S.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.4
    • /
    • pp.307-317
    • /
    • 1994
  • The surf ace microstructure modification by $N^+$ ion implantation into 7050Al alloy and its low cycle fatigue behavior were investigated. Ion implantation method is to physically implant accelerated ions to the surface of a substrate. High dose of nitrogen($5{\times}10^{17}ions/cm^2$) were implanted into 7050Al alloy using current density of accellerating voltage of 100KeV. The implanted layers were characterized by Electron Probe-Micro Analysis(EPMA), Auger Elecron Spectroscopy(AES), X-Ray Diffraction(XRD), X-Ray Photoelectron Spectroscopy(XPS), and Transmission Electron Microscopy(TEM). The experimental results were compared with computer simulation data. It was shown that AlN was formed to 4500 ${\AA}$ deep. The low cycle fatigue life of the $N^4$ion modified material was prolonged by about three times the unimplanted one. The improved low cycle fatigue life was attributed to the formation of AlN and the damaged region on the surface by $N^+$ ion implantation.

  • PDF

Effects of carbon content and Titanium Addition on Damping Capacity in Fe-17wt%Mn Alloy (Fe-17wt%Mn 합금의 진동감쇠능에 미치는 탄소와 티타늄 첨가의 영향)

  • Baik, S.H.;Kim, J.C.;Jee, K.K.;Shin, M.C.;Choi, C.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.9 no.1
    • /
    • pp.53-61
    • /
    • 1996
  • Effects of carbon and Ti on damping capacity are investigated in an Fe-17%Mn alloy. The suppressive force of carbon against ${\gamma}{\rightarrow}{\varepsilon}$ transformation increases linearly with an increase in its content, lowering Ms temperature and volume fraction of ${\varepsilon}$ martensite. Carbon deteriorates damping capacity by reducing the interfacial area of damping sources and mobility of the boundaries contributing to anelastic deformation. The reduction in damping capacity is accelerated when carbon-containing alloy is aged at higher temperatures above room temperature. The effect of Ti on damping capacity is found to be benificial in carbon-containing alloy, which is attributed to the depletion of carbon solute due to the formation of TiC.

  • PDF

Effects of V Addition on Tensile and Impact Properties in Low Carbon 1.1Mn Steels (저탄소 1.1 Mn 강의 인장 및 충격 성질에 미치는 V첨가의 영향)

  • Yang, H.R.;Cho, K.S.;Choi, J.H.;Sim, H.S.;Lee, K.B.;Kwon, H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.21 no.6
    • /
    • pp.281-286
    • /
    • 2008
  • In the 1.1 Mn steel containing boron, effects of the 0.1 V addition and processing condition were studied. In the $550^{\circ}C$ interrupted cooling where the main structure is (ferrite + pearlite), the impact toughness decreased as the tensile strength increased by the 0.1 V addition. The $800^{\circ}C$ rolling including two step rolling of $800-770^{\circ}C$, exhibited better strength-toughness balance, as compared to the $770^{\circ}C$ rolling. This seems to be kind of conditioning effect at higher temperature, e.g., more uniform deformation effect. In the accelerated cooling after the $750^{\circ}C$ rolling in a dual phase range, the impact toughness was enhanced, despite a large increase in tensile strength. This is believed to be related to the change of main structure from (ferrite + pearlite) to (ferrite + bainite).

The Effect of Final Heat Treatment and Welding on Irradiation Growth of Zircaloy-4 (최종열처리와 용접Zircaloy-4의 방사선조사 성장에 미치는 영향)

  • Im, Gap-Sun;Han, Jeong-Ho;Jeong, Yong-Hwan;Lee, Deok-Hyeon;Park, Gi-Seong;Kim, Yeong-Seok;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • v.3 no.1
    • /
    • pp.65-71
    • /
    • 1993
  • Abstract The effect of final heat treatment and welding on the irradiation growth of Zircaloy-4 was investigated. As a simulation for neurtron irradiation, accelerated proton beam with the energy of 3.5MeV was used up to the proton fluence of 9.8 ${\times}{10^{21}}$p/$m^2$ in the present study. It was found that irradiation growth of the annealed specimen was the highest and that of the ${\beta}$-quenched specimen was the samllest among the present specimens. The magnitude of irradiation growth of the present specimens decreased by welding. The difference in the magnitude of irradiation growth of the present specimens with different final heat treatment and the effect of welding on it were quantitatively analyzed in terms of crystallographic texture by using Kearns number, f, which was calculated from the x-ray diffraction data.

  • PDF

Effects of Neutron Irradiation and Heat Treatment for GaMnN (GaMnN 박막의 중성자 조사 및 열처리 효과)

  • 이계진;강희수;김정애;우부성;김경현;김도진;김봉구;강영환;유승호;김창균;김창수;김효진;임영언
    • Korean Journal of Materials Research
    • /
    • v.13 no.7
    • /
    • pp.409-414
    • /
    • 2003
  • The room-temperature operating semiconductor GaMnN is known to be improved in its magnetic property when a highly conductive precipitate $Mn_3$GaN exists. Therefore, it is useful to investigate the behavior of the precipitate through heat treatments for further improvement of its magnetic property. Furthermore, neutron irradiation may further influence the behavior of the precipitates, and consequently, their effects on the magnetization. With the heat treatment, $Mn_3$GaN decomposed and a new phase of $Mn_3$Ga has generated. The kinetics was accelerated by neutron irradiation, which might generate defects that can help the decomposition of N and/or the formation of $Mn_3$Ga. The increase and decrease of the magnetization of the heat-treated GaMnN thin films were explained consistently by the behavior of the precipitates.

Changes in the Structural and Electrical Properties of Ti3C2Tx MXene Depending on Heat Treatment (Ti3C2Tx MXene의 열처리에 따른 구조적, 전기적 특성 변화)

  • Kim, Ja-Hyun;Noh, Jin-Seo
    • Korean Journal of Materials Research
    • /
    • v.32 no.5
    • /
    • pp.264-269
    • /
    • 2022
  • Ti3C2Tx MXene, which is a representative of the two-dimensional MXene family, is attracting considerable attention due to its remarkable physicochemical and mechanical properties. Despite its strengths, however, it is known to be vulnerable to oxidation. Many researchers have investigated the oxidation behaviors of the material, but most researches were conducted at high temperatures above 500 ℃ in an oxidation-retarding environment. In this research, we studied changes in the structural and electrical properties of Ti3C2Tx MXene induced by low-temperature heat treatments in ambient conditions. It was found that a number of TiO2 particles were formed on the MXene surface when it was mildly heated to 200 ℃. Heating the material to higher temperatures, up to 400 ℃, the phase transformation of Ti3C2Tx MXene to TiO2 was accelerated, resulting in a TiO2/Ti3C2Tx hybrid. Consequently, the metallic nature of pure Ti3C2Tx MXene was transformed to semiconductive behavior upon heat-treating at ≥ 200 ℃. The results of this research clearly demonstrate that Ti3C2Tx MXene may be easily oxidized even at low temperatures once it is exposed to air.

Effect of Surface Modification by Friction Stir Process on Overlap Welded Inconel 718 Alloy (육성용접된 Inconel 718 합금의 마찰교반을 이용한 개질처리 효과)

  • Song, Kuk Hyun;Hong, Do Hyeong;Yang, Byung Mo
    • Korean Journal of Materials Research
    • /
    • v.23 no.9
    • /
    • pp.501-509
    • /
    • 2013
  • To evaluate the development of the microstructure and mechanical properties on surface modified and post-heattreated Inconel 718 alloy, this study was carried out. A friction stir process as a surface modification method was employed, and overlap welded Inconel 718 alloy as an experimental material was selected. The friction stir process was carried out at a tool rotation speed of 200 rpm and tool down force of 19.6-39.2 kN; post-heat-treatment with two steps was carried out at $720^{\circ}C$ for 8 h and $620^{\circ}C$ for 6 h in vacuum. To prevent the surface oxidation of the specimen, the method of using argon gas as shielding was utilized during the friction stir process. As a result, applying the friction stir process was effective to develop the grain refinement accompanied by dynamic recrystallization, which resulted in enhanced mechanical properties as compared to the overlap welded material. Furthermore, the post-heat-treatment after the friction stir process accelerated the formation of precipitates, such as gamma prime (${\gamma}^{\prime}$) and MC carbides, which led to the significant improvement of mechanical properties. Consequently, the microhardness, yield, and tensile strengths of the post-heat-treated material were increased more than 110%, 124% and 85 %, respectively, relative to the overlap welded material. This study systematically examined the relationship between precipitates and mechanical properties.