• Title/Summary/Keyword: accelerated corrosion test

Search Result 221, Processing Time 0.024 seconds

Corrosion Performance of Cu Bonded Grounding-Electrode by Accelerated Corrosion Test

  • Choi, Sun Kyu;Kim, Kyung Chul
    • Corrosion Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.211-217
    • /
    • 2018
  • Natural degradation of grounding-electrode in soil environment should be monitored for several decades to predict the lifetime of the grounding electrode for efficient application and management. However, long-term studies for such electrodes have many practical limitations. The conventional accelerated corrosion test is unsuitable for such studies because simulated soil corrosion process cannot represent the actual soil environment. A preliminary experiment of accelerated corrosion test was conducted using existing test standards. The accelerated corrosion test that reflects the actual soil environment has been developed to evaluate corrosion performances of grounding-electrodes in a short period. Several test conditions with different chamber temperatures and salt spray were used to imitate actual field conditions based on ASTM B162, ASTM B117, and ISO 14993 standards. Accelerated degradation specimens of copper-bonded electrodes were made by the facile method and their corrosion performances were investigated. Their corrosion rates were calculated to $0.042{\mu}m/day$, $0.316{\mu}m/day$, and $0.11{\mu}m/day$, respectively. These results indicate that accelerated deterioration of grounding materials can be determined in a short period by using cyclic test condition with salt spray temperature of $50^{\circ}C$.

The Study on the Acceleration Factor of Coastal Outdoor Corrosion test, Salt Spray Test and Accelerated Corrosion Test using 0.5wt% carbon steel (0.5wt% 탄소강을 이용한 해안 야외부식시험과 염수분무시험, 가속부식시험의 가속계수에 대한 연구)

  • Cho, E.Y.;Gwon, G.B.;Cho, D.H.;Kim, J.Y.
    • Corrosion Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.209-214
    • /
    • 2013
  • In the industry, accelerated corrosion test is used for the life time prediction. When anti-corrosion test proceeds in real environments, it is difficult that we predict and evaluate the corrosion life time because of the long test time such as 10 years or more time. Accelerated corrosion test and Salt spray test are able to test corrosion life time of products in the laboratory instead of outdoor corrosion test. Experimental procedure is selected for the corrosion standard specimen, exposure of the specimens, measurements of the mass loss and evaluating the mass loss data. As a result, the acceleration factor of the accelerated corrosion test to the outdoor corrosion test is 414.8. Therefore we can predict the corrosion life time of carbon steel during a short time period.

Study on the correlation between long-term exposure tests and accelerated corrosion tests by the combined damage of salts (염해 및 복합열화에 의한 부식촉진시험과 장기폭로 시험의 상관성에 관한 연구)

  • Park, Sang Soon;Lee, Min Woo
    • Corrosion Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.214-223
    • /
    • 2014
  • Interest in the durability assessment and structural performance has increased according to an increase of concrete structures in salt damage environment recent years. Reliable way ensuring the most accelerated corrosion test is a method of performing the rebar corrosion monitoring as exposed directly to the marine test site exposure. However, long-term exposure test has a disadvantage because of a long period of time. Therefore, many studies on reinforced concrete in salt damage environments have been developed as alternatives to replace this. However, accelerated corrosion test is appropriate to evaluate the critical chlorine concentration in the short term, but only accelerated test method, is not easy to get correct answer. Accuracy of correlation acceleration test depends on the period of the degree of exposure environments. Therefore, in this study, depending on the concrete mix material, by the test was performed on the basis of the composite degradation of the salt damage, and investigate the difference of corrosion initiation time of the rebar, and indoor corrosion time of the structure, of the marine environment of the actual environments were inuestigated. The correlation coefficient was derived in the experiment. Long-term exposure test was actually conducted in consideration of the exposure conditions submerged zone, splash zone and tidal zone. The accelerated corrosion tests were carried out by immersion conditions, and by the combined deterioration due to the carbonation and accelerated corrosion due to wet and dry condition.

A Study of Accelerated Corrosion Test and Chloride Penetration Analysis with Artificial Seawater Immersion Condition (인공해수 침지조건에 따른 부식촉진시험과 염화물침투해석에 대한 연구)

  • Park, Sang-Soon;Jeong, Ji-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.93-100
    • /
    • 2014
  • Steel reinforcement buried in concrete structure in submerged zone does not easily become corroded due to lack of dissolved oxygen. For that reason, accelerated corrosion test in submerged state is performed with an electrochemical method, which is not suitable for actual corrosion mechanism and makes it difficult to find relevance with long-term behavior. In this study, accelerated corrosion test was performed with the temperature and chloride concentration as main variables in order to establish a method for accelerated corrosion test in submerged zone. Corrosion was determined by the result of reinforcement corrosion monitoring based on galvanic potential measurement and half-cell potential method. The accelerated corrosion test result showed that temperature had the most dominant influence. To determine the chloride content, chloride concentration by depth in the test sample was measured. With the same conditions, chloride penetration interpretation was performed by DuCOM, a FEM durability interpretation program. Also, a test was performed to measure dissolved oxygen according to soaking conditions of artificial seawater, which was used for verifying the validity of the accelerated corrosion test result.

A Study on the Temporal Correlation of Long-term Exposure Test and Accelerated Corrosion Test of Rebar (장기폭로 시험과 철근 부식 촉진시험의 시간적 상관성에 관한 연구)

  • Lee, Min-Woo;Park, Sang-Soon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.4
    • /
    • pp.307-313
    • /
    • 2014
  • Recent interest in the increased structural performance and durability evaluation of this concrete structure in a salt damage environment is increasing. The most secure and reliable method of accelerated corrosion test is a method to carry out the rebar corrosion monitoring can be exposed directly to the marine test site exposure. However, long-term exposure testinghas the disadvantage that a long period is necessary. So, a lot of research on RC of salt damage environment have beenpromoted as alternatives to replace this. However, accelerated corrosion test, in the short term only is appropriate and is but an accelerated test method to evaluate the critical chlorine concentration, there is a difficult problem that you still get the answer. It is one of the correlation problems accelerated test correspond to a certain period of exposure environment. Therefore, in this study, to clarify the differences rebar corrosion beginning, through the actual corrosion accelerated test in corrosion time and laboratory test chamber of the structure of the marine environment results in both environments, it is an object of correlation coefficient derived.

An Experimental Study on the Prediction of Corrosion Resistance of Reinforced Concrete Using Accelerated Potentiometric Corrosion Test (전위차 부식촉진법을 이용한 철근 콘크리트의 내부식성 예측을 위한 실험 연구)

  • 오병환;조윤구;차수원;정원기
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.71-76
    • /
    • 1996
  • Recently, large scale concrete structures exposed to severe environment are increasingly built in various locations. The corrosion may affect severely the durability and service life of such a concrete structure. It is, therefore, necessary to develop durable concrete to enhance the corrosion resistance. The corrosion resistance of concrete can be identified through accelerated corrosion test. The purpose of the present paper is, therefore, to devise a reasonable and accurate method to predict the amount of corrosion of reinforcing steels. The proposed method which is basically based on the concept of Faraday's Law, determines the corroded amount of a re-bar according to accelerated corrosion time. The corrosion is accelerated by employing the potentiometric corrosion test arrangement. The effects of admixtures in concrete including fly ash and silica fume have been also studied to explore the relative corrosion resistance of concrete.

  • PDF

A Study on Accelerated Corrosion Test by Combined Deteriorating Action of Salt Damage and Freeze-Thaw (염해 및 동결융해의 복합열화 작용에 의한 부식촉진시험에 관한 연구)

  • Park, Sang-Soon;So, Byung-Tak
    • Corrosion Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.18-27
    • /
    • 2016
  • In this study, the accelerated corrosion test by combined deteriorating action of salt damage and freeze-thaw was investigated. freeze-thaw cycle is one method for corrosion testing; corrosion initiation time was measured in four types of concrete samples, i.e., two samples mixed with fly ash (FA) and blast furnace slag (BS), and the other two samples having two water/cement ratio (W/C = 0.6, 0.35) without admixture (OPC60 and OPC35). The corrosion of rebar embedded in concrete occurred most quickly at the $30^{th}$ freeze-thaw cycle. Moreover, a corrosion monitoring method with a half-cell potential measurement and relative dynamic elastic modulus derived from resonant frequency measures was conducted simultaneously. The results indicated that the corrosion of rebar occurred when the relative dynamic elastic modulus was less than 60%. Therefore, dynamic elastic modulus can be used to detect corrosion of steel bar. The results of the accelerated corrosion test exhibited significant difference according to corrosion periods combined with each test condition. Consequently, the OPC60 showed the lowest corrosion resistance among the samples.

Evaluate the Concrete mix by Type Accelerated Corrosion Test and Chloride Penetration Analysis with Artificial Seawater Cyclic Wet and Dry Condition (인공해수 건습반복조건에 따른 콘크리트배합별 부식촉진시험법과 염화물 침투해석평가)

  • Park, Sang-Soon;Kim, Min-Wook
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.3
    • /
    • pp.211-218
    • /
    • 2013
  • Cyclic wet and dry conditions in the marine environment structures corrosion is known to be the fastest rising. For that reason, accelerated corrosion test methods for the reproduction of tidal environment has been actively conducted. However, many studies have estimated threshold value for steel corrosion or concentrated in chloride penetration analysis. In this study, cyclic wet and dry conditions to reproduce the structure of the environment in accelerated corrosion and chloride penetration test analysis was performed. Corrosion was determined by the result of reinforcement corrosion monitoring based on galvanic potential measurement and half-cell potential method. Accelerated corrosion test results for each formulation was different corrosion periods, the order OPC> FA> BS> High-strength concrete. FEM durability interpretation program DuCOM was conducted under the same conditions as in accelerated corrosion test. The experimental RCPT tests demonstrated the validity of the result.

Estimation of Critical Chloride Threshold Value in Concrete by the Accelerated Corrosion Test

  • Vicho, Victor C.;Bae, Su-Ho;Park, Jae-Im;Lee, Kwang-Myong;Kim, Jee-Sang;Jung, Sang-Hwa
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.201-204
    • /
    • 2006
  • It should be noted that the critical chloride threshold level is not considered to be a unique value for all conditions. This value is dependent on concrete mix proportions, cement type and constituents, presence of admixtures, environmental factors, reinforcement surface conditions, and other factors. In this study, the accelerated corrosion test for reinforcing steel was conducted by electrochemical and cyclic wet and dry seawater method, respectively and during the test, corrosion monitoring by half-cell potential method was carried out to detect the time to initiation of corrosion for individual test specimen. For this purpose, lollypop and right hexahedron test specimens were made for 31%, 42%, and 50% of W/C, respectively, and then the accelerated corrosion test for reinforcing steel was executed. It was observed from the test that the time to initiation of corrosion was found to be different with the water-cement ratio and accelerated corrosion test method, respectively and the critical chloride threshold values were found to range from 0.91 to $1.47kg/m^3$.

  • PDF

A Study on Correlation Between Cyclic Drying-Wetting Accelerated Corrosion Test and Long-term Exposure Test (건습반복 부식촉진시험 및 장기폭로시험의 상관성에 대한 연구)

  • Park, Sang-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.136-143
    • /
    • 2016
  • There are various method for evaluating the durability life of concrete structures due to salt damage. The best way is to perform a corrosion test for a rebar embedded in concrete specimen was exposure to marine environment. However, this method has the disadvantage that it takes a long period of time. Also, accelerated corrosion test which was complemented complements the time-consuming weakness is limited to apply because it could not reveal a correlation between long-term exposure test. Accordingly, the purpose of this study is to derive a correlation coefficient between cycle drying-wetting accelerated corrosion test and long-term exposure test. Corrosion initiation time was measured in four types of concrete samples, i.e., two samples mixed with fly ash(FA) and blast furnace slag(BS), and the other two samples having two water/cement ratio(W/C = 0.6, 0.35) without admixture(OPC 60 and OPC 35). The accelerated corrosion test was carried out by two case, i.e., one is a cyclic drying-wetting method(case 1), and the other is a artificial seawater ponding test method(case 2). Whether corrosion occurs, it was measures using half-cell potential method. The results indicated that case 1 is to accelerated the corrosion of rebar about 24~36% as compared with case 2, then the corrosion of rebar embedded in concrete occurred according to the order of OPC60, FA, BS, OPC35. Correlation coefficient between accelerated corrosion test and long-term exposure test, case 1 is 4.23 to 5.42, and case 2 is 6.54 to 7.82.