• Title/Summary/Keyword: accelerated corrosion

Search Result 445, Processing Time 0.023 seconds

A Numerical Study on Flow-Accelerated Corrosion in Two Adjacent Elbows

  • Yun, Hun;Hwang, Kyeongmo;Moon, Seung-Jae
    • Corrosion Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.6-12
    • /
    • 2016
  • Flow-Accelerated Corrosion (FAC) is a well-known degradation mechanism that attacks the secondary piping in nuclear power plants. Since the Surry Unit 2 event in 1986, most nuclear power plants have implemented management programs to deal with damages in carbon and low-alloy steel piping. Despite the utmost efforts, damage induced by FAC still occurs in power plants around the world. In order to predict FAC wear, some computer programs were developed such as CHECWORKS, CICERO, and COMSY. Various data need to be input to these programs; the chemical composition of secondary piping, flow operating conditions and piping geometries. CHECWORKS, developed by the Electric Power Research Institute (EPRI), uses a geometry code to calculate geometry effects. Such a relatively simple geometry code is limited in acquiring the accuracy of FAC prediction. Recently, EPRI revisited the geometry code with the intention of updating it. In this study, numerical simulations were performed for two adjacent $90^{\circ}$ elbows and the results were analysed in terms of the proximity effect between the two adjacent elbows.

A Study on Correlation Between Accelerated Corrosion Test and Long-term Exposure Test According to the Temperature Condition (온도조건에 따른 철근부식 촉진시험과 장기폭로시험의 상관성에 관한 연구)

  • Park, Sang-Soon;So, Byung-Tak
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.203-208
    • /
    • 2016
  • In this study, to clarify the differences rebar corrosion beginning, through the actual corrosion accelerated test in corrosion time and laboratory test chamber of the structure of the marine environment results in both environments, it is an object of correlation coefficient derived. The accelerated corrosion test was carried out by two case, I.e., one is $20^{\circ}C$ of low temperaure codition(case 1), and the other is $65^{\circ}C$ of high temperaute codition(case 2). Whether corroions occurs, it was measures using half-cell potential method. The results indicated that case 2 is to acclerate the corrosion of rebar about 1.7~1.8 times as compared with case 1, thenthe corrosion of rebar embadded in concrete occurred according to the order of OPC60, FA, BS, OPC35. Correlation coefficient between acclerated corrosion test and long-term exposure test, case 1 is 2.45 to 2.94, and case 2 is 4.37~4.99.

A Research on Stray-Current Corrosion Mechanism of High Voltage Cable Connector on Electrification Vehicles

  • Lee, Hwi Yong;Ahn, Seung Ho;Im, Hyun Taek
    • Corrosion Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.117-120
    • /
    • 2019
  • Considering the tendency of development of electrification vehicles, development and verification of new evaluation technology is needed because of new technology applications. Recently, as the battery package is set outdoors of an electric vehicle, such vehicles are exposed to corrosive environments. Among major components connected to the battery package, rust prevention of high-voltage cables and connectors is considered the most important issue. For example, if corrosion of high voltage cable connectors occurs, the corrosion durability assessment of using an electric vehicle will be different from general environmental corrosion phenomena. The purpose of this study is to investigate the corrosion mechanism of high voltage cable connectors of an electric vehicle under various driving environments (road surface vibration, corrosion environment, current conduction by stray current, etc.) and develop an optimal rust prevention solution. To improve our parts test method, we have proposed a realistic test method to reproduce actual electric vehicle corrosion issues based on the principle test.

Effects of Surface Roughness on Atmospheric Corrosion of Galvanized Steel Sheets (아연도금 강판의 대기부식에 미치는 표면 거칠기의 영향)

  • 안진호;강성군;장세기
    • Journal of the Korean institute of surface engineering
    • /
    • v.31 no.6
    • /
    • pp.307-316
    • /
    • 1998
  • The effects of surface roughness on chromate conversion coating and the corrosion behavior of galvanized steel sheets were investigated. Surface roughness was differently given to the galvanized steel sheets tested and these were then chromated. Accelerated corrosion test was conducted under the condition of $30^{\circ}C$, 90%RH with flowing 200ppm $SO_2$ gas. The galvanized steels were also exposed to urban environment for 5 weeks. The corrosion rates were measured by weight gain method. The distribution of chromate film and corrosion product on the coating were examined which SEM/EDS. The chromate film formed preferentially at the convex sites rather than at the concave sites on the surface. The corrosion products were found at the concave sites where the chromate film formed rarely. The corrosion product on the coating were found at the concave sites where the chromate film formed rarely. The corrosion rates increased slightly with the surface roughness in accelerated corrosion test but significantly in field test.

  • PDF

An Experimental Study on the Corrosion Characteristics of Reinforcing Steel in Concrete by the Accelerated Corrosion Test (부식촉진시험에 의한 콘크리트 내의 철근의 부식특성에 관한 실험적 연구)

  • 배수호;정영수;김년산;권영우;권혁진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.503-507
    • /
    • 2000
  • The corrosion protection methods of reinforcing steel in concrete are the various methods such as increasing thickness of cover concrete, using of reinforcing bars coated with epoxy, dosage of corrosion inhibitor as concrete admixture, cathodic protection method and etc. In this study, the performance of corrosion protection was investigated for the test specimens using corrosion inhibitors and cathodic protection, respectively. For this purpose, the accelerated corrosion tests for reinforcing steel were conducted according to the periodic cycles(140 days) of wetting($65^{\circ}C$, 90% R.H) and drying period($15^{\circ}C$, 65% R.H) for the test specimens. As a result, it can be concluded from the test that the effect of corrosion inhibitor was found to be variable with products, the cathodic protection method was found to be independent of salt concentration in concrete.

  • PDF

Corrosion Behavior of Nickel-Plated Alloy 600 in High Temperature Water

  • Kim, Ji Hyun;Hwang, Il Soon
    • Corrosion Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.61-67
    • /
    • 2008
  • In this paper, electrochemical and microstructural characteristics of nickel-plated Alloy 600 were investigated in order to identify the performance of electroless Ni-plating on Alloy 600 in high-temperature aqueous condition with the comparison of electrolytic nickel-plating. For high temperature corrosion test of nickel-plated Alloy 600, specimens were exposed for 770 hours to typical PWR primary water condition. During the test, open circuit potentials (OCP's) of all specimens were measured using a reference electrode. Also, resistance to flow accelerated corrosion (FAC) test was examined in order to check the durability of plated layers in high-velocity flow environment at high temperature. After exposures to high flow rate aqueous condition, the integrity of surfaces was confirmed by using both scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). For the field application, a remote process for electroless nickel-plating was demonstrated using a plate specimen with narrow gap on a laboratory scale. Finally, a practical seal design was suggested for more convenient application.

An Experimental Study on the Corrosion Monitoring of Reinforcing Steel in Concrete by the Accelerated Corrosion Test (부식촉진시험에 의한 콘크리트 내의 철근의 부식 모니터링에 관한 실험적 연구)

  • 배수호;정영수;김진영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.543-548
    • /
    • 2001
  • The corrosion monitoring methods of reinforcing steel in concrete are the various methods such as half cell potential method, galvanic current method, resistivity method, polarization resistance method, AC impedance method and etc. In this study, the corrosion monitoring methods of reinforcing steel in concrete were investigated for the test specimens using corrosion inhibitors, zinc-mortar, zinc-plate, respectively. For this purpose, the accelerated corrosion tests for reinforcing steel were conducted according to the periodic cycles(140 days) of wetting($65^{\circ}C$, 90% R.H.) and drying period(15$^{\circ}C$ , 65% R.H.) for the test specimens. As a result, it can be concluded from the test that half cell potential and galvanic current method as monitoring techniques for corrosion were found to be relatively reliable and easily usable method in the field.

  • PDF

Effect of Cr Addition to High Mn Steel on Flow-Accelerated Corrosion Behaviors in Neutral Aqueous Environments (Cr 첨가가 고망간강의 중성 수용액 환경 내 유동가속부식 거동에 미치는 영향)

  • Jeong, Yeong Jae;Park, Jin Sung;Bang, Hye Rin;Lee, Soon Gi;Choi, Jong Kyo;Kim, Sung Jin
    • Corrosion Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.373-383
    • /
    • 2021
  • The effect of Cr addition to high Mn steel on flow-accelerated corrosion (FAC) behavior in a neutral aqueous environment was evaluated. For comparison, two types of conventional ferritic steels (API X70 steel and 9% Ni steel) were used. A range of experiments (electrochemical polarization and impedance tests, weight loss measurement, and metallographic observation of corrosion scale) were conducted. This study showed that high Mn steel with 3% Cr exhibited the highest resistance to FAC presumably due to the formation of a bi-layer scale structure composed of an inner Cr enriched Fe oxide and an outer Mn substituted partially with Fe oxide on the surface. Although the high Mn steels had the lowest corrosion resistance at the initial corrosion stage due to rapid dissolution kinetics of Mn elements on their surface, the kinetics of inner scale (i.e. Cr enriched Fe oxide) formation on Cr-bearing high Mn steel was faster in dynamic flowing condition compared to stagnant condition. On the other hand, the corrosion scales formed on API X70 and 9% Ni steels did not provide sufficient anti-corrosion function during the prolonged exposure to dynamic flowing conditions.

Three-dimensional Turbulent Flow Analysis in Curved Piping Systems Susceptible to Flow-Accelerated Corrosion (유동가속부식이 잠재한 곡관내의 3차원 난류유동 해석)

  • Jo, Jong-Chull;Kim, Yun-Il;Choi, Seok-Ki
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.900-907
    • /
    • 2000
  • The three-dimensional turbulent flow in curved pipes susceptible to flow-accelerated corrosion has been analyzed numerically to predict the pressure and shear stress distributions on the inner surface of the pipes. The analysis employs the body-fitted non-orthogonal curvilinear coordinate system and a standard $ {\kappa}-{\varepsilon}$ turbulence model with wall function method. The finite volume method is used to discretize the governing equations. The convection term is approximated by a high-resolution and bounded discretization scheme. The cell-centered, non-staggered grid arrangement is adopted and the resulting checkerboard pressure oscillation is prevented by the application of a modified version of momentum interpolation scheme. The SIMPLE algorithm is employed for the pressure and velocity coupling. The numerical calculations have been performed for two curved pipes with different bend angles and curvature radii, and discussions have been made on the distributions of the primary and secondary flow velocities, pressure and shear stress on the inner surface of the pipe to examine applicability of the present analysis method. As the result it is seen that the method is effective to predict the susceptible systems or their local areas where the fluid velocity or local turbulence is so high that the structural integrity can be threatened by wall thinning degradation due to flow-accelerated corrosion.

  • PDF

Abrief study on the corrosion of bronze roofing tile (납(Pb)도금(동개와)의 부식 연구)

  • Kim, Sa-Dug
    • 보존과학연구
    • /
    • s.15
    • /
    • pp.52-58
    • /
    • 1994
  • To protect corrosion of bronze roofing tile for Choson Royal Historic Museum, lead coating on tile was performed by electroplating method with thickness of $35\mum$. Lead coated tile samples were inverstigated what corrosion products were formed with color changes on them by testing Accelerated Weathering. No sulfides were formed on samples contacting with 300ppm sulfur dioxide and any color changes were not found. In Accelerated Weathering test, White hydrocerussite, basic lead carbonate($2PbCO_3Pb(OH)_2$) having protective structure made of compact adhering crystals.

  • PDF