• Title/Summary/Keyword: accelerated construction

Search Result 374, Processing Time 0.027 seconds

Experiments on Flow Characteristics of Asphalt Seal Composite Waterproofing Method for Underground Concrete Structure Exterior Wall Waterproofing (지하 콘크리트 구조물 외벽 방수용 아스팔트 씰재 복합방수 공법의 흘러내림 특성에 관한 실험)

  • Ko, Sang-Ung;Kim, Kyoung-Hoon;Kim, Young-Sam;Shin, Hong-Chul;Kim, Jin-Man
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.297-303
    • /
    • 2018
  • With the changing trend of the building construction to high rising and large scaling, the underground structure has been increased, and its usage also increased and variety. Hence, to protect the underground structure against underground water, various water proofing methods has been developed. Among the many water proofing methods, the combined water proofing method using both asphalt seal and sheet has been widely used to secure the sufficient performance and decrease the construction failure. However, during the summer period of extremely high temperature conditions, the asphalt sealing materials were separated and leaked into the structure. Therefore, the aim of the research is to provide the quality standard of asphalt sealing material based on the various temperature changes depending on seasons. According to the experimental results, the temperature of the sealing materials applied on the slab was increased up to $54^{\circ}C$ which was $3^{\circ}C$ higher than the structure temperature of $51^{\circ}C$. Based on the melting test for asphalt sealing materials applied on the outside wall of the structure, in the case of water-dispersing typed materials showed significant melting down due to its slow evaporation and low viscosity. Furthermore, from the accelerated test conducted indoor conditions, a solvent-type and water-dispersing typed materials showed significant melting down due to their low viscosity and melting point in ambient conditions. Based on these results, viscosity and melting point are found as the important factors on asphalt sealing materials' quality, and it is necessary to designate the quantitative level of the viscosity and melting point for quality control.

A Preservation of Traditional Landscape through Co-Prosperity in Local Communities - In Case of "Terraced Paddy Fields of Gacheon Village, Namhae", Scenic Site - (지역공동체 상생을 통한 전통경관 보전방안 - 명승 남해 가천마을 다랑이 논을 사례로 -)

  • Kim, Dong-Hyun
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.40 no.2
    • /
    • pp.14-23
    • /
    • 2022
  • The purpose of this study is to preserve the sustainable traditional landscape of the "Terraced Paddy Fields of Gacheon Village, Namhae". To this end, the changes in the traditional landscape and its factors were analyzed, and a conservation plan was sought to coexist with local communities. The results are as follows; First, the traditional scenery of "Terraced Paddy Fields of Gacheon Village, Namhae" is characterized by stonework built on a steep topography to secure cultivated land and narrow rice fields. To this end, local communities have maintained the traditional landscape through their long-established traditional knowledge, but after the designation of cultural heritage, the unique landscape of the "Terraced Paddy Fields of Gacheon Village, Namhae" changed as standardized stone construction methods were applied. Recently, the Cultural Heritage Administration recognized these problems and returned to the direct repair system of local communities, so cultivated land is regaining the scenery of the past. Second, the factors that changed the traditional landscape of the "Terraced Paddy Fields of Gacheon Village, Namhae" were largely found to be a decrease in voluntary conservation consciousness, a limited management range of preservation society, a decrease in agricultural population, and a lack of skilled traditional skills. After the designation of cultural heritage, expectations for policy support by the state or local governments accelerated the damage as existing farmland was neglected, and the lack of agricultural population also resulted in the same result. The preservation society is making efforts to preserve it, but the phenomenon of excessive and insufficient management personnel is intensifying. Conflicts between residents due to profit polarization have spread to the problem of escalating. In addition, there are concerns about the loss of traditional knowledge such as step farming technology and stone construction functions. Third, to suggest a win-win plan with local communities for preserving the traditional landscape, it is necessary to seek the ways to expand farming participants and generate profits through the placement of professional careers and public-private linkage system. In addition, it is desirable to improve the profit distribution system through the preservation society to strengthen the management authority and induce participation. And a support system is required for education on the transmission of terraced farming technology and stone construction functions.

Corrosion Rate of Structural Pipes for Greenhouse (온실 구조용 파이프의 부식속도 검토)

  • Yun, Sung-Wook;Choi, Man Kwon;Lee, Si Young;Moon, Sung Dong;Yoon, Yong Cheol
    • Journal of Bio-Environment Control
    • /
    • v.24 no.4
    • /
    • pp.333-340
    • /
    • 2015
  • Because soils in reclaimed lands nearby coastal areas have much higher salinity and moisture content than soils in inland area, parts of greenhouses embedded in such soils are exposed to highly corrosive environments. Owing to the accelerated corrosion of galvanized steel pipes for substrucrture and structure of greenhouses in saline environments, repair and reinforcement technologies and efficient maintenance and management for the construction materials in such facilities are required. In this study, we measured the corrosion rates of the parts used for greenhouse construction that are exposed to the saline environment to obtain a basic database for the establishment of maintenance and reinforcement standards for greenhouse construction in reclaimed lands with soils with high salinity. All the test pipes were exposed to soil and water environments with 0, 0.1, 0.3, and 0.5% salinity during the observation period of 480 days. At the end of the observation period, salinity-dependent differences of corrosion rate between black-surface corrosion and relatively regular corrosion were clearly manifested in a visual assessment. For the soils in rice paddies, the corrosion growth rate increased with salinity (0.008, 0.027, 0.036, and $0.043mm{\cdot}yr^{-1}$ at 0, 0.1, 0.3, and 0.5% salinity, respectively). The results for the soils in agricultural fields are 0.0002, 0.039, 0.040, and $0.039mm{\cdot}yr^{-1}$ at 0, 0.1, 0.3, and 0.5% salinity, respectively. The higher corrosion rate of rice-paddy soil was associated with the relatively high proportion of fine particles in it, reflecting the general tendency of soils with evenly distributed fine particles. Hence, it was concluded that thorough measures should be taken to counteract pipe corrosion, given that besides high salinity, the soils in reclaimed lands are expected to have a higher proportion of fine particles than those in inland rice paddies and agricultural fields.

Monitoring of Concrete Deterioration Caused by Steel Corrosion using Electrochemical Impedance Spectroscopy(EIS) (EIS를 활용한 철근 부식에 따른 콘크리트 손상 모니터링)

  • Woo, Seong-Yeop;Kim, Je-Kyoung;Yee, Jurng-Jae;Kee, Seong-Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.6
    • /
    • pp.651-662
    • /
    • 2022
  • The electrochemical impedance spectroscopy(EIS) method was used to evaluate the concrete deterioration process related to chloride-induced steel corrosion with various corrosion levels(initiation, rust propagation and acceleration periods). The impressed current technique, with four total current levels of 0C, 13C, 65C and 130C, was used to accelerate steel corrosion in concrete cylinder samples with w/c ratio of 0.4, 0.5, and 0.6, immersed in a 0.5M NaCl solution. A series of EIS measurements was performed to monitor concrete deterioration during the accelerated corrosion test in this study. Some critical parameters of the equivalent circuit were obtained through the EIS analysis. It was observed that the charge transfer resistance(Rc) dropped sharply as the impressed current increased from 0C to 13C, indicating a value of approximately 10kΩcm2. However, the sensitivity of Rc significantly decreased when the impressed current was further increased from 13C to 130C after corrosion of steel had been initiated. Meanwhile, the double-layer capacitance value(Cdl) linearly increased from 50×10-6μF/cm2 to 250×10-6μF/cm2 as the impressed current in creased from 0C to 130C. The results in this study showed that monitoring Cdl is an effective measurement parameter for evaluating the progress of internal concrete damages(de-bonding between steel and concrete, micro-cracks, and surface-breaking cracks) induced by steel corrosion. The findings of this study provide a fundamental basis for developing an embedded sensor and signal interpretation method for monitoring concrete deterioration due to steel corrosion at various corrosion levels.

A Study in the construction of the system of knowledge management and human resources management in the Korean firm (한국기업의 지식경영 구축과 인적자원 개발에 관한 연구)

  • Heo Kap-Soo
    • Management & Information Systems Review
    • /
    • v.17
    • /
    • pp.191-214
    • /
    • 2005
  • Recently, most enterprises are having a knowlege management boom. A number of books associated with the knowlege management are being published, countless public seminars are held, and many research councils have been organized studying it formally or informally as if not importing the system is like falling behind a fashion. However, there are not many cases that achieved success by constructing the system of knowledge management. Then, why the knowledge management is not so much effective despite so many voices wanting the change of management system and a lot of public lectures about it? I guess the reason is that most companies do not have concrete methodology. Seeing a result of a survey which reported that with spread of venture boom and successful examples being known widely, the outflow of precious human resources is accelerated and a large number of employees of conglomerates have already resigned or are considering separation from their positions, we can realize that are occurring a change which can be nearly called severance in an occupational view and an organization culture. The preference to a large enterprise or a public institution of labor is low today and the notion about a lifelong job is regarded as past remains. As for this, it could be said that the social atmosphere that pursued the stability of a job has been changed to the practical one that attaches importance to ability and pay. The way of thinking of employees has been changed while established organizations cannot satisfy their desire and this explains why important members of a company are flown out. The reason why superior human resources move to venture businesses is that they can do their likable work and also prove their ability as well as unconventional rewards. Although existing companies are trying to preserve important human resources through performance compensating stock option, temporary patching up of personnel management cannot retard the rushing wind of foundation and the outflow of labor. On the contrary, clumsy import of performance-based reward system not only fails to hire superior labor power but also can bring about a sense of incompatibility and conflicts among the remaining employees. Therefore, this thesis, focusing on how to choose, develop, and maintain the human resources, will suggest a future-aiming human resources management model of Korean enterprises after comparing and analyzing the actual condition of domestic companies and the trends of advanced corportaions.

  • PDF

Evaluation of SATEEC Daily R Module using Daily Rainfall (일강우를 고려한 SATEEC R 모듈 적용성 평가)

  • Woo, Wonhee;Moon, Jongpil;Kim, Nam Won;Choi, Jaewan;Kim, Ki-sung;Park, Youn Shik;Jang, Won Seok;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.5
    • /
    • pp.841-849
    • /
    • 2010
  • Soil erosion is an natural phenomenon. However accelerated soil erosion has caused many environmental problems. To reduce soil loss from a watershed, many management practices have been proposed worldwide. To develop proper and efficient soil erosion best management practices, soil erosion rates should be estimated spatially and temporarily. The Universal Soil Loss Equation (USLE) and USLE-based soil erosion and sediment modelling systems have been developed and tested in many countries. The Sediment Assessment Tool for Effective Erosion Control (SATEEC) system has been developed and enhanced to provide ease-of-use interface to the USLE users. However many researchers and decision makers have requested to enhance the SATEEC system for simulation of soil erosion and sediment reflecting effects of single storm event. Thus, the SATEEC R factors were estimated based on 5 day antecedent rainfall data. The SATEEC 2.1 daily R factor was applied to the study watershed and it was found that the R2 and EI values (0.776 and 0.776 for calibration and 0.927 and 0.911 for validation) with the daily R were greater than those (0.721 and 0.720 for calibration and 0.906 and 0.881 for validation) with monthly R, which was available in the SATEEC 2.0 system. As shown in this study, the SATEEC with daily R can be used to estimate soil erosion and sediment yield at a watershed scale with higher accuracy. Thus the SATEEC with daily R can be efficiently used to develop site-specific soil erosion best management practices based on spatial and temporal analysis of soil erosion and sediment yield at a daily-time step, which was not possible with USLE-based soil erosion modeling system.

A Study on Deterioration of Stone Monuments by Acid Fog (산성안개에 의한 석조문화재 구성암석의 손상 연구)

  • Do, Jin Young;Kim, Sang Woo;Cho, Hyen Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.135-145
    • /
    • 2015
  • In order to predict the deterioration of stone monument due to acid fog, an artificial fog test using pH4.0 and pH5.6 was applied to the Gyeongju Namsan granite, decite and marble. After the test had weathered Gyeongju Namsan granite a larger weight reduction due to acid fog than fresh one. Decite has shown the most significant changes among the tested rocks with about 0.005 % of weight reduction. Decite and weathered granite will have considerable weight reduction due to acid rain than the acid fog, whereas the marble was expected to show a weight reduction regardless of the phase of water. The porosity and water absorption rate of weathered granite had significantly increased. This result means that the weathered rock is predicted to be more susceptible to acid fog than the fresh rock. The absorption rate of the marble after the test had shown approximately 50 % increase. The color of the samples had slightly changed towards yellow, such tendency was greater shown in weathered rocks. The marble reacted with acid fog had an increased whiteness. A large amount of cation in the samples is caused mainly by the dissociation of minerals through the reaction with acid fog.

The Study on Property Criteria of Soil Dressing, Mounding and Earth Cutting for Farmland Preservation

  • Hyun, Byung-Keun;Sonn, Yeon-Kyu;Park, Chan-Won;Chun, Hyen-Chung;Cho, Hyun-Jun;Song, Kwan-Cheol;Zhang, Yong-Seon;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.1
    • /
    • pp.36-40
    • /
    • 2014
  • Korea's agricultural land is constantly being reduced. The reasons for this are due to the change of agricultural profitability and the policy conditions. The reduction of agricultural land in 2010 showed a decline trend by 14.4 % of paddy fields and 1.2% of uplands compared to areas from 2000. These reductions were mainly due to switch rice paddy fields into upland or greenhouse facility cultivation because of low profitability of rice products compared to farm products. In addition, the permit system of agricultural areas was relaxed in switching paddy fields and this accelerated the reduction of agricultural land. For this reason, more than 1% of agricultural land area has been reduced every year for last five years. Moreover, indiscreet fill and cover materials such as construction wastes were used in agricultural lands and caused land contamination which threatened foundation as sustainable agricultural lands. For these reasons, it is a desperate situation to conserve good agricultural lands. However, the standards of transported soils, filling soils and cutting soils in the Agricultural Land Act are qualitative and have a problem of causing complaints. Therefore, the following criteria (proposals) are proposed in the Agricultural Land Act; (1) Use the proper soils for crops (criterion), (2) Soil components and amounts should be proper as transported soils (range), and (3) Prohibiting usage of improper earth rocks or recycled aggregates in case of filling soils (kinds). The presented criteria (proposals) suggest following; (1) Use physio-chemically proper soils for crops (criterion), (2) In case of transported soils, i, exclude potential acid sulphate soils, ii, gravel content sould be less than 15%, and iii, Heavy metals and other contaminants should be less than the soil contamination warning limit from the Ministry of Environments, (3) In case of filling soils, 13 kinds of recycled wastes specified in the Wastes Control Act should not be used as filling soils, (4) Practice soil conservation technology in case of sloping areas, and (5) Follow proper fertilizer application standards for maturing paddy fields and uplands when cutting soils.

The Welding Surface and Mechanical Characteristics in Friction Stir Welding for 5456-H116 Alloy (마찰교반용접에 의한 5456-H116 합금의 용접 형상과 기계적 특성)

  • Kim, Seong-Jong;Han, Min-Su;Jang, Seok-Ki
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.3
    • /
    • pp.273-278
    • /
    • 2012
  • The use of Al alloys instead of fiber-reinforced plastic(FRP) in ship construction has increased because of the advantages of Al-alloy ships, including high speed, increased load capacity, and ease of recycling. This paper describes the effects of probe diameter on the optimum friction stir welding conditions of 5456-H116 alloy for leisure ship, measured by a tensile test. In friction stir welding using a probe diameter of 5 mm under various travel and rotation speed conditions, the best performance was achieved with a travel speed of 61 mm/min. Using a probe diameter of 6 mm, rotation speeds of 170-210 rpm, and a travel speed of 15 mm/min produced a rough surface and voids because of insufficient heat input produced by the low rotation speed. At 500-800 rpm, chips were observed, although there were no voids, and the weld surface was excellent. However, at 1100-2500 rpm, many chips were produced due to excessive heat input. Heat effects were very evident on the bottom. For a travel speed of 15 mm/min, heat input caused by friction increased as the rotation speed increased. The mechanical characteristics were degraded by accelerated softening due to increasing heat input.

Petrological and mineralogical characteristics of the rocks constituting the Sungryemun (South Gate) (숭례문 구성 석재의 암석학적 및 광물학적 특징)

  • 박찬수;이상헌
    • The Journal of the Petrological Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.196-206
    • /
    • 2003
  • The geochemical and mineralogical investigation on the rocks and repair material comprising of the Sungryemun (The 1st National Treasure) has been made. Rock of the Sungryemun is highly weathered coarse-grained calc-alkali granite. The rock consists mainly of quartz, perthite, plagioclase and biotite with small amounts of orthoclase, muscovite, chlorite and sericite, which are major weathering products from perthite. For obtaining informations about degree of weathering, mineral composition of the original rock calculated by CIPW norm and weathered rock composition determined by XRD quantitative analysis were plotted on a ternary diagram of quartz-potash feldspar-plagioclase. Original rock compositions are plotted on the central granite area. whereas weathered ones are plotted on the granite area close to quartz. The result means that quartz is more abundant in weathered rock, due to selective chemical weathering of potash feldspar and plagioclase over quartz. On the whole, surface of the rocks were black-coated, exfoliated and highly fractured due to the physical and chemical weathering and heavy load has made the cracks in the lower parts of the stone construction. Also, cement and nails, which was used as repair material, during the repair work in the early 1960's, has accelerated the weathering process. Furthermore, weathered conditions of repair materials are very severe. Therefore, it is very urgent to establish of the conservation plan for the Sungryemun.