• 제목/요약/키워드: accelerated compressive strength

검색결과 152건 처리시간 0.03초

Durability performance of concrete containing Saudi natural pozzolans as supplementary cementitious material

  • Al-Amoudi, Omar S. Baghabra;Ahmad, Shamsad;Khan, Saad M.S.;Maslehuddin, Mohammed
    • Advances in concrete construction
    • /
    • 제8권2호
    • /
    • pp.119-126
    • /
    • 2019
  • This paper reports an experimental investigation conducted to evaluate the durability performance of concrete mixtures prepared utilizing blends of Type I Portland cement (OPC) and natural pozzolans (NPs) obtained from three different sources in Saudi Arabia. The control concrete mixture containing OPC alone as the binder and three concrete mixtures incorporating NPs were prepared keeping water/binder ratio of 0.4 (by weight), binder content of $370kg/m^3$, and fine/total aggregate ratio of 0.38 (by weight) invariant. The compressive strength and durability properties that included depth of water penetration, depth of carbonation, chloride diffusion coefficient, and resistance to reinforcement corrosion and sulfate attack were determined. Results of this study indicate that at all ages, the compressive strength of NP-admixed concrete mixtures was slightly less than that of the concrete containing OPC alone. However, the concrete mixtures containing NP exhibited lower depth of water penetration and chloride diffusion coefficient and more resistance to reinforcement corrosion and sulfate attack as compared to OPC. NP-admixed concrete showed relatively more depth of carbonation than OPC when subjected to accelerated carbonation. The results of this investigation indicates the viability of utilizing of Saudi natural pozzolans for improving the durability characteristics of concrete subjected to chloride and sulfate exposures.

석회암 순환잔골재를 사용한 고강도 콘크리트의 공학적 특성 (Engineering Properties of High Strength Concrete Using Lime Stone Recycling Fine Aggregate)

  • 한천구;김현우
    • 한국건설순환자원학회논문집
    • /
    • 제3권1호
    • /
    • pp.72-79
    • /
    • 2007
  • This study investigates the engineering properties of concrete incorporating lime stone crushed fine aggregate(Ls), which has been abandoned about 20% of total production due to the low purity. Test results showed that increase of Ls had favorable fluidity and slightly decreased air content. Bleeding capacity of all specimens was not appeared as those were high strength mixture proportion, but the specimens using more Ls accelerated initial and final setting. For the mechanical properties, specimens incorporating higher ratio of Ls, overall, resulted in increase of compressive strength, and exhibited very small inclined tendency in a dynamic elasticity modulus test In addition, for the durability properties, specimens incorporating higher Ls dramatically decreased a drying shrinkage and showed similar tendency in a frost & thaw test, as well as showing no more change in an accelerated neutralization test from the beginning. In conclusion, as it was confirmed in the experimental test, the high strength concrete applying Ls did not showed any problems in the aspects of engineering properties and mostly exhibited even more excellent quality than the specimens using natural fine aggregate.

  • PDF

Influence of supplementary cementitious materials on strength and durability characteristics of concrete

  • Praveen Kumar, V.V.;Ravi Prasad, D.
    • Advances in concrete construction
    • /
    • 제7권2호
    • /
    • pp.75-85
    • /
    • 2019
  • The present study is focused on the mechanical and durability properties of ternary blended cement concrete mix of different grades 30 MPa, 50 MPa and 70 MPa. Three mineral admixtures (fly ash, silica fume and lime sludge) were used as a partial replacement of cement in the preparation of blended concrete mix. The durability of ternary blended cement concrete mix was studied by exposing it to acids HCl and $H_2SO_4$ at 5% concentration. Acid mass loss factors (AMLF), acid strength loss factor (ASLF) and acid durability factor (ADF) were determined, and the results were compared with the control mix. Chloride ions penetration was investigated by conducting rapid chlorination penetration test and accelerated corrosion penetration test on control mix and ternary blended cement concrete. From the results, it was evident that the usage of these mineral admixtures is having a beneficiary role on the strength as well as durability properties. The results inferred that the utilization of these materials as a partial replacement of cement have significantly enhanced the compressive strength of blended concrete mix in 30 MPa, 50 MPa and 70 MPa by 42.95%, 32.48% and 22.79%. The blended concrete mix shown greater resistance to acid attack compared to control mix concrete. Chloride ion ingress of the blended cement concrete mix was low compared to control mix implying the beneficiary role of mineral admixtures.

촉진양생법에 의한 고로슬래그 미분말 혼합 콘크리트의 압축강도 예측 (Compressive strength prediction of concrete using ground granulated blast furnace slag by accelerated testing)

  • 김용직;김영진;최연왕
    • 한국건설순환자원학회논문집
    • /
    • 제4권4호
    • /
    • pp.91-98
    • /
    • 2009
  • 최근 시멘트 및 골재 등 원재료 값의 상승 및 세계적인 유가 급등으로 인한 운송비의 증가로 레미콘 제조원가는 상승하고 있다. 그러나 레미콘 제조업체들 간의 과다한 경쟁으로 인해 레미콘의 납품 단가는 오히려 낮아지고 있는 실정이다. 이를 극복하기 위한 일환으로 레미콘 제조업체들은 레미콘의 제조원가를 최소한으로 줄이고자 하는 노력 중 하나로 고로슬래그 미분말 및 플라이애시를 혼화재로 사용하는 업체가 증가하고 있다. 그러나 이러한 광물질 혼화재를 사용한 콘크리트의 품질관리에 대한 연구는 미흡한 실정이다. 따라서, 본 연구에서는 고로슬래그 미분말 혼합 콘크리트의 28일 압축강도를 조기에 예측하기 위해 촉진양법을 이용하였다. 고로슬래그 미분말 혼합률 별로 선형회귀분석을 실시하여 추정식을 제시하였고 90%의 신뢰구간을 나타내었다. 또한 실험의 신뢰성을 높이기 위해 모든 배합은 3회 반복하였고, 배합순서는 랜덤추출법을 사용하였다. 이러한 실험결과 촉진양생법에 의한 1일 촉진강도로서 고로슬래그 미분말 혼합 콘크리트의 재령 28일 압축강도를 예측할 수 있는 추정식의 신뢰성을 확인하는 성과를 얻었다.

  • PDF

슬래그 시메\ulcorner의 수화반응에 미치는 석회석 분말의 영향 (Influence of Limestone Powder on the Hydration of slag cement)

  • 이민석;윤철현;최현국
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.85-88
    • /
    • 1999
  • We tested the limestone powder as a filler powder for the effective use of slag cement. Hydration process were investigated by measuring the thermal differential analysis(DTA), compressive strength, XRD patterns, calorimeter of slag cement-limestone powder paste prepared by mixing limestone powder-slag cement. The results obtained in this study, there were no significant difference between the cases of adding up to 5% limestone powder, but the reaction time was accelerated. Also the compressive strength was increased for adding up to 5% limestone powder. The min hydrated paste products were Ca(OH)2 and calcium silicate hydrates. In the case of mixed limestone powder peak appear tricalcium carboaluminate hydrate in the sample of 7 days hydration.

  • PDF

촉진양생조건에 따른 PC 콘크리트의 품질 특성에 관한 연구 (A Study on Quality Characteristic of PC Concrete According to the Accelerated Curing Conditions)

  • 김관호;박광수;신수균;이준구
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2001년도 학술발표회 발표논문집
    • /
    • pp.119-122
    • /
    • 2001
  • Annual demand of a precast concrete bench flume used in the irrigation canal of arable land readjustment has continuously increased units recently. The average life time of the precast concrete bench flume was estimated $8{\sim}10$ years, which is too shorter than the life time of in-site placed concrete structures. In order to increase the compressive strength of the precast concrete bench flumes, the highest temperature of being lower than $95^{\circ}C$ was suggested in this study, Through analyzing the relation between the compressive strength and the amount of chloride penetration into concrete specimens, a new formula early estimating durability of the concrete structure was suggested.

  • PDF

경량 폴리머 콘크리트의 특성연구 (Evaluation for Characteristics of Lightweight Polymer Concrete)

  • 채경희;최예환;연규선;이윤수
    • 한국농공학회지
    • /
    • 제43권4호
    • /
    • pp.106-112
    • /
    • 2001
  • Recent advance in material technology has accelerated the development of high strength concrete using lightweight artificial aggregates. The lightweight concrete has many advantages that the reduction of dead loads and the increase in load capacity can offer. In this study the lightweight polymer concrete using unsaturated polyester resin and lightweight aggregate were prepared and tested for testing the physical and the mechanical properties. The compressive strengths of lightweight polymer concretes with apparent specific gravity for 1.32 to 1.78 were 250 to 470 kfg/cm$^2$ and flexural strengths were measured to be in the range of 1/3-1/4 of compressive strength.

  • PDF

콘크리트용 골재로서 전기로슬래그의 적용성에 대한 연구 (A Study on the Application of the Electric Arc Furnace Slag Aggregate in Concrete)

  • 문한영;유정훈
    • 콘크리트학회논문집
    • /
    • 제11권3호
    • /
    • pp.101-111
    • /
    • 1999
  • Compared with the BF slag, the EAF slag has expansion due to the reaction with water and free CaO. Therefore it is specified in Concrete Specification that the FAP slag aggregated must not be used in concrete. Because of this reason it is unusual to use the EAF slag aggregate in concrete. The EAF slag aggregate treated with accelerated and water aging was comparatively satisfied with fundamental properties, which are specific gravity, unit weight, abrasion and immersion expansion ratio, as concrete aggregate. Therefore when we measured the compressive strength till 28 days, we found that the mortar and concrete replacing the natural aggregate with the EAF slag aggregate by 4 steps had better results than the concrete using the natural aggregate in a view of the compressive strength. But at 91 days, concrete using the EAF slag aggregate had no difference with it using the natural aggregate.

OLED 페유리 미분말을 혼화재로 활용한 콘크리트의 탄산화 특성 평가 (Evaluation of Carbonation Characteristic for Concrete using OLED Waste Glass Powder)

  • 김재돈;장일영
    • 한국산업융합학회 논문집
    • /
    • 제23권6_2호
    • /
    • pp.1111-1117
    • /
    • 2020
  • In this study, the carbonation characteristics of concrete according to the mixture of OLED waste glass were evaluated. Replacement capacities of OLED waste glass were 0%, 10%, 20%, and 30% of cement, and they were named OG 0, OG 10, OG 20, and OG 30. As a result of the compressive strength test, OG 0 without replacing OLED waste glass showed high intensity until the 14th. However, the higher the replacement rate of OLED waste glass, the higher the compressive strength of 28 days. In addition, the speed of carbonation was faster with the higher the replacement rate of OLED waste glass, and the accelerated carbonation experiment was about three times faster than the natural carbonation test. In conclusion, the carbonation characteristics of OLED concrete are expected to be positive in terms of atmospheric CO2 absorption.

2년 양생 실험결과를 이용한 고로슬래그 미분말 콘크리트의 염화물 확산 예측식 (Prediction Equation for Chloride Diffusion in Concrete Containing GGBFS Based on 2-Year Cured Results)

  • 윤용식;조성준;권성준
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제23권2호
    • /
    • pp.1-9
    • /
    • 2019
  • 대표적인 콘크리트 혼화재료 중 하나인 고로슬래그 미분말을 혼입한 콘크리트는 잠재수경성에 의해 콘크리트의 장기 내구성능 및 역학적 성능이 향상된다. 본 연구에서는 3 가지 수준의 물-결합재 비(0.37, 0.42, 0.47) 및 고로슬래그 미분말 혼입률(0 %, 30 %, 50 %)을 고려하여 염해에 대한 내구성능 평가를 수행하였으며, 염화물 확산 거동(촉진 염화물 확산계수, 통과 전하량)을 예측하는 식을 도출하고 촉진 염화물 확산계수와 통과 전하량간의 상관관계를 평가하였다. 2년 양생조건 시 고로슬래그 미분말 혼입 콘크리트에서 OPC 콘크리트 대비 촉진 염화물 확산계수 평가 결과에서는 최대 28 %의 감소율을 통과 전하량 평가에서는 최대 29 %의 감소율을 나타냈다. 또한 물-결합재 비의 증감에 의한 영향을 OPC 콘크리트 보다 GGBFS 미분말 혼입 콘크리트에서 더 적게 받는 것으로 판단된다. 배합 특성 및 실험 결과를 바탕으로 촉진 염화물 확산계수 및 통과 전하량을 예측하는 식을 다중회귀분석을 통해 도출한 결과, 통과 전하량 예측식이 확산계수 예측식보다 높은 결정계수를 나타냈다.