• Title/Summary/Keyword: accelerated bridge construction

Search Result 26, Processing Time 0.021 seconds

Accelerated Construction Method of Long-span PSC Girder Bridge for the Recovery of Flood Damaged Road (수해도로 복구를 위한 장경간 프리캐스트 바닥판 PSC거더교 교량 급속 시공)

  • Oh, Hyun Chui;Ma, Hyang Wook;Kim, In Gyu;Kim, Young Jin
    • Journal of Korean Society of societal Security
    • /
    • v.1 no.4
    • /
    • pp.51-56
    • /
    • 2008
  • Because of our country's climate that has the 50% of the annual precipitation in summer, annually a lot of bridges on the roads are broken in this season. So, we need an accelerated bridge construction method that complete to repair the roads. This paper introduces the Hangae 2 bridge, prefabricated bridge using full depth precast deck panels and new types of PSC girders. The Hangae 2 bridge located in lnje-gun, kangwon-do. This is a good example of the accelerated bridge construction method for recovery of flood damaged road. The PSC girder bridge system introduced in this paper is a rapid construction method for bridge that can reduce the term of works over 50%.

  • PDF

Proposal of Domestic Road Bridge Deck Deterioration Models and Forecast of Replacement Demand (국내 도로교량 바닥판 열화모델 제안 및 교체 수요 예측)

  • Kim, Jin-Kwang;Jang, Il-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.4
    • /
    • pp.61-68
    • /
    • 2017
  • Bridge decks are members that rapidly deteriorated due to various environmental factors such as heavy vehicle and deicing salt, etc. As the lifespan of bridges built in Korea increases, it is expected that the demand for replacing the deteriorated bridge decks will increase. In other countries, Accelerated Bridge Construction technology using precast decks is already actively being used as a countermeasure for replacement demand of deteriorated bridge decks. In this study, bridge decks deterioration models are proposed by collecting and analysing the condition index data of domestic bridge decks. Also, the future replacement demands of deteriorated bridge decks in terms of replacement time and replacement scale are predicted.

Design of Prestress for prefabricated bridge piers (조립식 교각의 프리스트레스 설계)

  • Kim, Hyun-Ho;Shim, Chang-Su;Chang, Chul-Hun;Kim, Cheol-Hwan;An, Dong-Geun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.225-228
    • /
    • 2006
  • Fast construction of bridge structures is a new trend of bridge design. Accelerated bridge construction includes the construction of superstructures and substructures. In order to reduce the construction time for substructures, precast prestressed bridge piers are increasingly applied in other countries. One of the main concern in the design of precast piers is the determination of the axial prestress forces. The behavior of the piers should be investigated under service loadings and ultimate conditions. In this paper, the magnitude of prestress is calculated to control the stress at the joint of precast piers. Considering long-term behavior of prestressed piers, P-M diagrams for precast piers are obtained to verify the ultimate behavior of the piers. Based on these studies, precast piers are applied to the light-railway bridge piers.

  • PDF

Quasi-static test of the precast-concrete pile foundation for railway bridge construction

  • Zhang, Xiyin;Chen, Xingchong;Wang, Yi;Ding, Mingbo;Lu, Jinhua;Ma, Huajun
    • Advances in concrete construction
    • /
    • v.10 no.1
    • /
    • pp.49-59
    • /
    • 2020
  • Precast concrete elements in accelerated bridge construction (ABC) extends from superstructure to substructure, precast pile foundation has proven a benefit for regions with fragile ecological environment and adverse geological condition. There is still a lack of knowledge of the seismic behavior and performance of the precast pile foundation. In this study, a 1/8 scaled model of precast pile foundation with elevated cap is fabricated for quasi-static test. The failure mechanism and responses of the precast pile-soil interaction system are analyzed. It is shown that damage occurs primarily in precast pile-soil interaction system and the bridge pier keeps elastic state because of its relatively large cross-section designed for railways. The vulnerable part of the precast pile with elevated cap is located at the embedded section, but no plastic hinge forms along the pile depth under cyclic loading. Hysteretic curves show no significant strength degradation but obvious stiffness degradation throughout the loading process. The energy dissipation capacity of the precast pile-soil interaction system is discussed by using index of the equivalent viscous damping ratio. It can be found that the energy dissipation capacity decreases with the increase of loading displacement due to the unyielding pile reinforcements and potential pile uplift. It is expected to promote the use of precast pile foundation in accelerated bridge construction (ABC) of railways designed in seismic regions.

Seismic Performance of Prefabricated Composite Column for Accelerated Bridge Construction (급속시공을 위한 조립식 합성교각의 내진성능 평가)

  • Lee, Jung-Woo;Chin, Won-Jong;Joh, Chang-Bin;Kwark, Jong-Won
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.4
    • /
    • pp.425-430
    • /
    • 2010
  • This paper investigates the seismic behavior of a prefabricated composite column which is made by onsite connection of precast composite column segments to accelerate bridge construction. Quasi-static cyclic loading tests were performed on three prefabricated composite columns with different connection details to find their seismic capacity. Test results show that the onsite connections remains in elastic range and no slip is observed as designed in spite of plastic hinge formation at the column. The test results also indicate that the prefabricated composite column has better overall seismic capacity compared to a conventional reinforced concrete column with seismic details.

Development of Creative Design and Construction Methods of Bridge Piers using 3D Model (3차원 모델 기반의 미적 교각 설계 및 시공 기술 개발)

  • Lee, Sang-Yong;Dong, Ngoc Son;Shim, Chang-Su
    • Journal of KIBIM
    • /
    • v.5 no.2
    • /
    • pp.12-18
    • /
    • 2015
  • Bridge piers typically have circular or rectangular shapes without decorative design. Prefabrication for accelerated construction has been widely adopted in bridge structures. Cost for steel formwork is a main restriction of creative irregular shapes. 3D modelling techniques allow creative design of columns and 3D printing provides possibility to minimize the fabrication cost. In this paper, 3D design process of bridge piers was suggested by converting 2D picture into 3D decorative shape. Formwork design using 3D printed panels was also proposed and mock-up tests were conducted. Precast columns need accurate geometry control from fabrication to assembly. Laser scanning and geometry control devices were adopted. Through the digitalized process of design, fabrication and assembly, creative design of structures can be realized in reasonable cost range.

Corrosion Durability Evaluation of Uncoated Structural Steel Using Accelerated Exposure Tests (부식촉진실험을 이용한 강교용 무도장 강재의 부식내구성 평가)

  • Kim, In Tae;Itoh, Yoshito
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.1
    • /
    • pp.79-86
    • /
    • 2007
  • The corrosion durability of steel bridge coatings, such as organic and metallic coatings, is often evaluated by field exposure tests, but such tests take from several years to decades to complete. As a potential method for fast corrosion testing, accelerated exposure tests were considered in this study. The S6-cycle accelerated exposure test, specified in the Japanese Industrial Standards (JIS K5621), was carried out on uncoated structural steels for 30, 60, 90, 120 and 150 days, and the resultant weight loss was determined. The weight loss was compared with that obtained from previous field exposure tests, and acceleration factors of the S6-cycle test to field exposure test sites were determined. The application of the S6-cycle accelerated exposure tests to field environments was presented based on the acceleration factor and the amount of flying salt.

Local Corrosion and Fatigue Damages of Steel Plates at the Boundary with Concrete (콘크리트에 접해있는 강재의 국부부식과 피로손상)

  • Kim, In Tae;Kainmua, Shigenobu;Cheung, Jin Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.313-321
    • /
    • 2008
  • Recently in Japan, fracturing was observed on the diagonal member of a through truss bridge at the boundary region with the concrete slab. Local corrosion damage where the diagonal member was enclosed in the concrete slab is an important factor in the fracture. In this study, accelerated exposure tests were carried out on concrete-steel model specimens simulating steel members at the boundary with concrete. Fatigue tests were then performed on the corroded model specimens. Accelerated exposure tests of the S6-cycle, which is carried out on the model specimens for 150, 300, 450 and 600 da ys. Their surface geometry was then measured. From the accelerated exposure test results, change in maximum and mean corrosion depths was determined according to the testing periods. The effect of local corrosion on fatigue strength was also presented based on the fatigue test results.