• 제목/요약/키워드: ac-dc transfer

검색결과 101건 처리시간 0.018초

양극성 직류 배전망에 적용 가능한 3포트 NPC 기반의 DAB 컨버터에 대한 연구 (A Study of the Three Port NPC based DAB Converter for the Bipolar DC Grid)

  • 윤혁진;김명호;백주원;김주용;김희제
    • 전력전자학회논문지
    • /
    • 제22권4호
    • /
    • pp.336-344
    • /
    • 2017
  • This paper presents the three-port DC-DC converter modeling and controller design procedure, which is part of the solid-state transformer (SST) to interface medium voltage AC grid to bipolar DC distribution network. Due to the high primary side DC link voltage, the proposed converter employs the three-level neutral point clamped (NPC) topology at the primary side and 2-two level half bridge circuits for each DC distribution network. For the proposed converter particular structure, this paper conducts modeling the three winding transformer and the power transfer between each port. A decoupling method is adopted to simplify the power transfer model. The voltage controller design procedure is presented. In addition, the output current sharing controller is employed for current balancing between the parallel-connected secondary output ports. The proposed circuit and controller performance are verified by experimental results using a 30 kW prototype SST system.

Bi-Directional Wireless Power Transfer for Vehicle-to-Grid Systems

  • Sun, Yue;Jiang, Cheng;Wang, Zhihui;Xiang, Lijuan;Zhang, Huan
    • Journal of Power Electronics
    • /
    • 제18권4호
    • /
    • pp.1190-1200
    • /
    • 2018
  • A current sourced bi-directional wireless power transfer (WPT) system is proposed to solve the problems that exist in the bi-directional WPT for vehicle-to-grid (V2G) systems. These problems include the fact that these systems are not safe enough, the output power is limited and the control methods are complicated. Firstly, the proposed system adopts two different compensation and control methods on both the primary and secondary sides. Secondly, based on an AC impedance analysis, the working principle is analyzed and the parameter configuration method with frequency stability is given. In order to output a constant voltage, a bi-directional DC/DC circuit and a controllable rectifier bridge are adopted, which are based on the "constant primary current, constant secondary voltage" control strategy. Finally, the effectiveness and feasibility of the proposed methods are verified by experimental results.

교류전류 1차 표준용 열전형 전류변환기의 제작 (Fabrication of the Thermal Current Converters as the Primary AC Current Standard)

  • 권성원;이래덕
    • 센서학회지
    • /
    • 제1권1호
    • /
    • pp.77-83
    • /
    • 1992
  • 저주파에서의 교류전류 1차표준은 교류-직류 변환기를 이용하여 직류전류표준으로부터 유도된다. 전류측 정범위 $5mA{\sim}20A$, 주파수범위 $10Hz{\sim}100kHz$에서 교류전류의 1차표준기로 사용될 15개의 교류-직류 열전형 전류변환기를 제작 및 평가한 결과, 이를 이용한 교류전류표준의 유지 및 보급의 측정 불확도는, 주파수 20 kHz이 하에서 측정 전류 20 mA까지는 최대 52 ppm, 100 mA까지는 60 ppm으로 확인되었고, 측정 전류 및 주파수가 증가함에 따라 200 ppm까지 증가하는 것으로 나타났다.

  • PDF

A Self-Excited Induction Generator with Simple Voltage Regulation Suitable for Wind Energy

  • Ahmed Tarek;Nishida Katsumi;Nakaoka Mutsuo
    • Journal of Power Electronics
    • /
    • 제4권4호
    • /
    • pp.205-216
    • /
    • 2004
  • In this paper, a three-phase induction machine-based wind power generation scheme is proposed. This scheme uses a low-cost diode bridge rectifier circuit connected to an induction machine via an ac load voltage regulator (AC-LVR) to regulate dc power transfer. The AC-LVR is used to regulate the DC load voltage of the diode bridge rectifier circuit which is connected to the three-phase self-excited induction generator (SEIG). The excitation of the three-phase SEIG is supplied by the static VAR compensator (SVC). This simple method for obtaining a full variable-speed wind turbine system by applying a back-to-back power converter to a wound rotor induction generator is useful for wind power generation at widely varying speeds. The dynamic performance responses and the experimental results of connecting a 5kW 220V three-phase SEIG directly to a diode bridge rectifier are presented for various loads. Moreover, the steady-state simulated and experimental results of the PI closed-loop feedback voltage regulation scheme prove the practical effectiveness of these simple methods for use with a wind turbine system.

A Contactless Power Supply for a DC Power Service

  • Kim, Eun-Soo;Kim, Yoon-Ho
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제1권4호
    • /
    • pp.483-491
    • /
    • 2012
  • It is expected that, in the future, DC power service will be widely used for photovoltaic home power generation systems, since DC consuming devices are ever increasing. Instead of using multiple converters to convert DC to AC and then AC to DC, the power service could solely be based on DC. This would eliminate the need for converters, reducing the cost, complexity, and possibly increasing the efficiency. However, configuration of direct DC power service with mechanical contacts can cause spark voltage or an electric shock when the switch is turned on and off. To solve these problems, in this paper, a contactless power supply for a DC power service that can transfer electric power produced by photovoltaics to the home electric system using magnetic coupling instead of mechanical contacts has been proposed. The proposed system consists of a ZVS boost converter, a half-bridge LLC resonant converter, and a contactless transformer. This proposed contactless system eliminates the use of DC switches. To reduce the stress and loss of the boost converter switching devices, a lossless snubber with coupled inductor is applied. In this paper, a switching frequency control technique using the contactless voltage sensing circuit is also proposed and implemented for the output voltage control instead of using additional power regulators. Finally, a prototype consisted of 150W boost converter has been designed and built to demonstrate the feasibility of the proposed contactless photovoltaic DC power service. Experimental results show that 74~83% overall system efficiency is obtained for the 10W~80W load.

넓은 공극 범위에서도 안정된 소프트 스위칭 동작 가능한 개선된 무선 전력 충전 시스템 (An Improved Wireless Power Charging System Capable of Stable Soft-Switching Operation Even in Wide Air Gaps)

  • 우정원;문유진;김은수
    • 전력전자학회논문지
    • /
    • 제27권3호
    • /
    • pp.180-191
    • /
    • 2022
  • In this paper, a single-stage alternating current (AC)-DC converter is proposed for the automated-guided vehicle wireless charging system. The proposed converter is capable of soft-switching under all input voltage (VAC: 220 Vrms ± 10%), load conditions (0-1 kW), and air gap changes (40-60 mm) by phase control at a fixed switching frequency. In addition, controlling a wide output voltage (Vo: 39~54 VDC) is possible by varying the link voltage and improving the input power factor and the total harmonic distortion factor. Experimental results were verified by making a prototype of a 1-kW wireless power charging system that operates with robustness to changes in air gaps.

평면형 다중접합 열전변환기의 특성 (Characteristics of a Planar Multijunction Thermal Converter)

  • 조현덕;김진섭;이종현;이정희;박세일;권성원
    • 대한전자공학회논문지SD
    • /
    • 제38권10호
    • /
    • pp.699-705
    • /
    • 2001
  • 교류의 실용 표준기로 사용하기 위해 TC 1에서 TC 6까지 6개의 평면형 열전변환기를 설계 및 제작하였다. 공기중 및 진공중의 전압 감응도는 TC 6의 경우 열손실이 가장 작아 약 4.03 mV/mW 및 약 6.38 mV/mW의 가장 큰 값을 나타내었다. 열시정수는 히터의 열관성이 가장 부족한 TC 6을 측정하여 약 8 ms를 얻었다. FRDC(fast reversed DC) 방법에 의한 교류-직류 전압 및 전류 변환오차는 40 Hz∼10 ㎑ 주파수 범위에서 1 V 및 5 mA의 정현파 실효전압 및 실효전류를 인가하였을 때 약 ±0.41∼±0.85 ppm 및 약 ±0.15∼±1.16 ppm으로서 실용표준으로 사용하기에 적합하였다.

  • PDF

비상전원 기능을 갖는 하이브리드 ESS를 위한 PCS 제어전략 (A PCS Control Strategy for Hybrid ESS with Function of Emergency Power Supply)

  • 김상진;권민호;최세완;백석민;김미성
    • 전력전자학회논문지
    • /
    • 제21권4호
    • /
    • pp.302-311
    • /
    • 2016
  • This paper proposes a hybrid ESS that integrates an energy storage system (ESS) with an uninterruptible power supply (UPS). The hybrid ESS has a demand management and emergency power supply function while increasing the battery utilization of the UPS, which has just been used in a power failure. In addition to the critical load, the proposed system augments the capacity of emergency generation using an additional load, which has voltage and frequency-dependent characteristics to the grid side. The control algorithm of the AC-DC converter and bidirectional DC-DC converter is proposed for demand management and emergency power supply. Furthermore, seamless and autonomous transfer methods to alleviate the transient during mode transfer are proposed. To validate the proposed control scheme, experimental results from a 5 kW prototype are provided.