• 제목/요약/키워드: abutment distribution of stresses

검색결과 44건 처리시간 0.024초

임플란트와 지대주간 내측 연결을 갖는 임플란트 보철의 유한요소 응력분석 (FINITE ELEMENT STRESS ANALYSIS OF IMPLANT PROSTHESIS WITH INTERNAL CONNECTION BETWEEN THE IMPLANT AND THE ABUTMENT)

  • 안종관;계기성;정재헌
    • 대한치과보철학회지
    • /
    • 제42권4호
    • /
    • pp.356-372
    • /
    • 2004
  • Statement of problom: In the internal connection system the loading transfer mechanism within the inner surface of the implant and also the stress distribution occuring to the mandible can be changed according to the abutment form. Therefore it is thought to be imperative to study the difference of the stress distribution occuring at the mandible according to the abutment form. Purpose: The purpose of this study was to assess the loading distributing characteristics of 3 implant systems with internal connection under vertical and inclined loading using finite element analysis. Material and method: Three finite element models were designed according to the type of internal connection of ITI(model 1), Friadent(model 2), and Bicon(model 3) respectively. This study simulated loads of 200N in a vertical direction (A), a $15^{\circ}$ inward inclined direction (B), and a $30^{\circ}$ outward inclined direction (C). Result: The following results have been made based on this numeric simulations. 1. The greatest stress showed in the loading condition C of the inclined load with outside point from the centric cusp tip. 2. Without regard to the loading condition, the magnitudes of the stresses taken at the supporting bone, the implant fixture, and the abutment were greater in the order of model 2, model 1, and model 3. 3. Without regard to the loading condition, greater stress was concentrated at the cortical bone contacting the upper part of the implant fixture, and lower stress was taken at the cancellous bone. 4. The stress of the implant fixture was usually widely distributed along the inner surface of the implant fixture contacting the abutment post. 5. The stress distribution pattern of the abutment showed that the great stress was usually concentrated at the neck of the abutment and the abutment post, and the stress was also distributed toward the lower part of the abutment post in case of the loading condition B, C of the inclined load. 6. In case of the loading condition B, C of the inclined load, the maximum von Misess stress at the whole was taken at the implant fixture both in the model 1 and model 2, and at the abutment in the model 3. 7. The stress was inclined to be distributed from abutment post to fixture in case of the internal connection system. Conclusion: The internal connection system of the implant and the abutment connection methods, the stress-induced pattern at the supporting bone, the implant fixture, and the abutment according to the abutment connection form had differenence among them, and the stress distribution pattern usually had a widely distributed tendency along the inner surface of the implant fixture contacting the a butment post.

골유착성 치과 임플랜트 고정체 직경에 따른 지지골의 응력분포에 관한 삼차원 유한요소 분석적 연구 (A 3-dimensional Finite Element Analysis of Stress Distribution in the Supporting Bone by Diameters of Dental Implant Fixture)

  • 이명곤
    • 대한치과기공학회지
    • /
    • 제26권1호
    • /
    • pp.69-76
    • /
    • 2004
  • The objective of this finite element method study was to analyze the stress distribution induced on a supporting bone by 3.75mm, 4.0mm, 5.0mm diameter of dental implant fixture(13mm length). 3-dimensional finite element models of simplified gold alloy crown(7mm height) and dental implant structures(gold cylinder screw, gold cylinder, abutment screw, abutment, fixture and supporting bone(cortical bone, cancellous bone) designs were subjected to a simulated biting force of 100 N which was forced over occlusal plane of gold alloy crown vertically. Maximum von Mises stresses(MPa) under vertical loading were 9.693(3.75mm diameter of fixture), 8.885(4.0mm diameter of fixture), 6.301(5.0mm diameter of fixture) and the highest von Mises stresses of all models were concentrated in the surrounding crestal cortical bone. The wide diameter implant was the good choice for minimizing cortical bone-fixture interface stress.

  • PDF

치조골이 감소된 지대치를 이용한 고정성 국소의치의 유한요소법적 응력분석 (FINITE ELEMENT STRESS ANALYSIS OF FIXED PARTIAL DENTURE SUPPORTED BY THE ABUTMENT WITH REDUCED ALVEOLAR BONE)

  • 김영기;최충국;정재헌
    • 대한치과보철학회지
    • /
    • 제33권1호
    • /
    • pp.32-47
    • /
    • 1995
  • The purpose of this study was to determine the displacement of prosthesis & abutment and the stress distribution patterns induced in the periodontium by applying force to the fixed prosthesis. Two levels of periodontal support were compared using two-dimensional finite element stress analysis after placement of 3unit or 4 unit fixed partial denture(FPD) in case of missing of the lower first molar. Concentrated vertical load was delivered at the cusp tip of the second bicuspid or the central fossa of the pontic. The following results were obtained : 1. The greater the loss of alveolar bone in abutment teeth area, the greater the displacement of FPD and the stress concentration in alveolar bone around abutment. 2. The amount and direction of displacement and distribution of stress in the 4-unit FPD was better than those in the 3-unit FPD. 3. Multiple abutments reduced the amount of mesial and downward displacement of the weaked abutments and more uniformly distributed the stresses.

  • PDF

임플랜트-지대주의 연결방법에 따른 임플랜트 보철의 유한요소 응력분석 (FINITE ELEMENT STRESS ANALYSIS OF IMPLANT PROSTHESIS ACCORDING TO CONNECTION TYPES OF IMPLANT-ABUTMENT)

  • 허진경;계기성;정재헌
    • 대한치과보철학회지
    • /
    • 제43권4호
    • /
    • pp.544-561
    • /
    • 2005
  • Purpose : This study was to assess the loading distributing characteristics of implant systems with internal connection or external connection under vertical and inclined loading using finite element analysis. Materials and methods : Two finite element models were designed according to type of internal connection or external connection The crown for mandibular first molar was made using cemented abutment. Each three-dimensional finite element model was created with the physical properties of the implant and surrounding bone This study simulated loads of 200N at the central fossa in a vertical direction (loading condition A), 200N at the centric cusp tip in a 15$^{\circ}$ inward inclined direction (loading condition B), or 200N at the centric cusp tip in a 30$^{\circ}$ outward inclined direction (loading condition C) respectively. Von Mises stresses were recorded and compared in the supporting bone, fixture, abutment and abutment screw. Results : 1. In comparison with the whole stress or the model 1 and model 2, the stress pattern was shown through th contact of the abutment and the implant fixture in the model 1, while the stress pattern was shown through the abutment screw mainly in the model 2. 2. Without regard to the loading condition, greater stress was taken at the cortical bone, and lower stress was taken at the cancellous bone. The stress taken at the cortical bone was greater at the model 1 than at the model 2, but the stress taken at the cortical bone was much less than the stress taken at the abutment, the implant fixture, and the abutment screw in case of both model 1 and model 2. 3. Without regard to the loading condition, the stress pattern of the abutment was greater at the model 1 than at the model 2. 4. In comparison with the stress distribution of model 1 and model 2, the maximum stress was taken at the abutment in the model 1. while the maximum stress was taken at the abutment screw in the model 2. 5. The magnitude of the maximum stress taken at the supporting bone, the implant fixture, the abutment, and the abutment screw was greater in the order of loading condition A, B and C. Conclusion : The stress distribution pattern of the internal connection system was mostly distributed widely to the lower part along the inner surface of the implant fixture contacting the abutment core through its contact portion because of the intimate contact of the abutment and the implant fixture and so the less stress was taken at the abutment screw, while the abutment screw can be the weakest portion clinically because the greater stress was taken at the abutment screw in case of the external connection system, and therefore the further clinical study about this problem is needed.

하악 편측 유리단 국소의치의 직접유지장치 형태에 따른 3차원적 광탄성 응력분석 연구 (THREE-DIMENSIONAL PHOTOELATIC STRESS ANALYSIS OF CLASP RETAINERS INFLUENCED BY VARIOUS DESIGNS ON UNILATERAL FREE-END REMOVABLE PARTIAL DENTURES)

  • 김병무;유광희
    • 대한치과보철학회지
    • /
    • 제32권4호
    • /
    • pp.526-552
    • /
    • 1994
  • The extent and direction of movement of removable partial dentures during function are influenced by the nature of the supporting structures and and the design of the prosthesis. Since forces are transmitted to the abutment teeth through occlusal rests, guide planes and direct retainers during functional movements, proper design based on the avaialble research data will maintain the health of abutment teeth and their supporting structures. The purpose of this in vitro study is evaluating stress distribution clinically around the abutment teeth prepared following 4-type clasping systems for unilateral free-end removable partial dentures. Three-Dimensional Photoelastic Stress Analysis method was used because it shows a visual display of stresses of the simulated abutment teeth and residual ridges and reveals stress concentration that can be read at any given points in terms of direction and magnitude. For this study, the author fabricated 4 mandibular photoelastic epoxy models missing left 1st and End molar. Epoxy models were duplicated and 4 unilateral removable partial dentures were construe- ted in accordance with 4-type direct retainers. Unilateral free-end removable partial dentures were positioned on their own models. 6kg force was loaded on the every removable partial dentures of the epoxy model on the central fossa of mandibular left 1st molar vertically by the loading device. After the stress was frozen in a stress freezing furnace, 6 specimens of 6-mm thickness were made from every epoxy model and examined with the circular polariscope. The results were as follows : 1. Generally I-bar clasp revealed the most favorable stress distribution around the abutment teeth. 2. At the end portion of the free-end ridge, Back action clasp showed the highest stress concentration at the bucco-lingual and top portions of the residual alveolar ridge. 3. At the distal area of the abutment teeth, Akers clasp and Roach clasp showed higher stress concentration bucco-lingually and apically than the others. 4. To the abutment tooth, I-bar clasp showed the least stress distribution bucco-lingually but the others showed irregular stress distribution. 5. At the mesial area of the abutment teeth, the order of effective stress distribution was I-bar clasp, Back-action clasp, Akers clasp and Roach clasp. There was big difference of stress distribution between them. 6. At the right 2nd premolar and 1st molar, the stress concentration of Akers clasp was a little high but that of I-bar clasp was low.

  • PDF

임플랜트와 자연치를 지대치로 한 고정성 보철물의 응력분석 (A STRESS ANALYSIS OF FIXED PROSTHESES WITH DENTAL IMPLANT AND NATURAL TOOTH)

  • 양홍서
    • 대한치과보철학회지
    • /
    • 제31권3호
    • /
    • pp.447-459
    • /
    • 1993
  • A two dimensional finite element model was constructed to analyze the mechanical behavior of four unit fixed partial dentures (FPD) with a 2nd premolar abutment either employing a rigid or nonrigid connector and a 2nd molar abutment(Branemark implant, IMZ implants and natural tooth). Gap elements were used to model the clearance space of the nonrigid connectors and each components of implants. All FPDs with a implant abutment alter the patterns of stress distribution and displacement, but the magnitude of stress in the periodontium was not greater than that of the control. A FPD with rigid connectors induced the smaller stresses in the periodontium than a FPD with a nonrigid connector. A FPD with a Branemark implant exhibited the more desirable mechanical stress states as compared to the IMZ implants with IME or IMC.

  • PDF

내측 연결 및 외측 연결 방식으로 설계된 임플란트의 3차원적 유한요소 응력 분석 (Stress distribution of implants with external and internal connection design: a 3-D finite element analysis)

  • 정현주;양성표;박재호;박찬;신진호;양홍서
    • 구강회복응용과학지
    • /
    • 제33권3호
    • /
    • pp.189-198
    • /
    • 2017
  • 목적: 외측 육각형과 내측 원추형 연결부로 설계된 임플란트 지지 하악 구치 수복물에 교합력을 가할때 발생하는 생역학 현상을 분석하고자 한다. 연구 재료 및 방법: 외측 연결형 임플란트(EXHEX)와 내측 연결형 임플란트(INCON) 그리고 이와 결합할 해당 나사와 지대주 및 크라운을 제작하였고, 하악 무치악 치조골을 설계하였다. 각 부분을 조립하여 2종의 유한요소 모형을 제작하였다. 총 120 N 크기의 수직력(L1)과 45도 측방력(L2)을 가하였고, 유한요소 응력 분석을 시행하였다. 결과: L2 측방력 하중에 의해 발생한 최대 응력은 L1 수직력 하중에 의한 것 보다 6 - 15배 더 컸다. INCON 모델은 EXHEX 모델보다 크라운 교두부에서 2.2배 더 큰 변위량을 보여 주었다. 측방력에 의해 EXHEX 모델은 나사에서, INCON 모델은 임플란트 고정체의 상단 변연부에서 폰미세스 응력의 최대값이 관찰 되었다. INCON 모델에서는 임플란트 내부 계면에서 긴밀한 접촉이 유지 되었다. 결론: 측방력이 큰 변형과 응력을 발생하였으나, 임플란트에서의 최대 응력 발생부위는 INCON과 EXHEX 모델이 서로 상이하였다.

압축하중시 RPI clasp의 3가지 다른 proximal plate 형태에 따른 지대치 주위조직의 광탄성 응력 분석 (Photoelastic Stress Analysis of the Abutment Surrounding Tissue According to Shape of the Proximal Plate of the RPI Clasp)

  • 최정수;김부섭
    • 대한치과기공학회지
    • /
    • 제34권4호
    • /
    • pp.473-482
    • /
    • 2012
  • Purpose: The purpose of this study was to investigate the stress distribution of the surrounding tissues according to 3 proximal plate types of the RPI clasp. Methods: The removeable partial denture which mandibular right and left second premolars and mandibular molars were lost was attached to a three dimensional photo elastic epoxy resin model. Then 120N of vertical load was applied. After 3-dimensional photoelastic stress analysis was used to record the isochromatic fringe patterns. Results: Kratochvil type guiding plane exhibited little uniform stress distribution on load center and alveolar ridge, but higher stress concentration on buccal surface of second premolar. Krol type guiding plane exhibited the stress concentration on the front of load center and relatively higher stress concentration on buccal surface of first premolar. However, this type had no effect on canine. Researcher type guiding plane showed the stress concentration on second premolar and molar, but the little stress distribution on first premolar. Conclusion: In all types, excessive stress concentration was appeared and three types were not significant different.

고정성 보철치료에서 골유착성 임프란트의 경사도변화에 따른 변위와 응력에 관한 유한요소적 연구 (A FINITE ELEMENT ANALYSIS ON THE 3-UNIT FIXED PROSTHESIS SUPPORTED WITH A NATURAL TOOTH AND ANGLE VARIABLE IMPLANT)

  • 고현;우이형;박남수
    • 대한치과보철학회지
    • /
    • 제31권4호
    • /
    • pp.580-610
    • /
    • 1993
  • The purpose of this study was to analyse the deflection and stress distribution at the supporting bone and it's superstructure by the alteration of angulation between implant and it's implant abutment. For this study, the free-end saddle case of mandibular first and second molar missing would be planned to restore with fixed prosthesis. So the mandibular second premolar was prepared for abutment, and the cylinder type osseointegrated implant was placed at the site of mandibular second molar for abutment. The finite element stress analysis was applied for this study. 13 two-dimensional FEM models were created, a standard model at $0^{\circ}$ and 12 models created by changing the angulation between implant and implant abutment as increasing the angulation mesially and distally with $5^{\circ}$ unittill $30^{\circ}$. The preprocessing decording, solving and postprocessing procedures were done by using FEM analysis software PATRAN and SUN-SPARC2GX. The deflections and von Mises stresses were calculated under concentrated load (load 1) and distributed load(load 2) at the reference points. The results were as follows : 1. Observing at standard model, the amount of total deflection at the distobuccal cusp-tip of pontic under concentrated load was largest of all, and that at the apex of implant was least of all, and the amount of total deflection at the buccal cusp-tip of second premolar under distributed load was largest of all, and that at the apex of implant was least of all. 2. Increasing the angulation mesially or distally, the amounts of total deflection were increased or decreased according to the reference points. But the order according to the amount of total deflection was not changed except apex of second premolar and central fossa of implant abutment under concentrated load during distal inclination. 3. Observing at standard model, the von Mises stress at the distal joint of pontic under concentrated load was largest of all, and that at the apex of implant was least of all. The von Mises stress at the distal margin of second premolar under distributed load was largest of all, and that at the apex of Implant was least of ail. 4. Increasing the angulation of implant mesially, the von Mises stresses at the mesial crest of implant were increased under concentrated load and distributed load, but those were increased remarkably under distributed load and so that at $30^{\circ}$ mesial inclination was largest of all. 5. Increasing the angulation of implant distally, the von Mises stresses at the distal crest of implant were increased remarkably under concentrated load and distributed load, and so those at $30^{\circ}$ distal inclination were largest of all.

  • PDF

간접유치장치 설계변화에 따른 하악유리단 국소의치의 광탄성 응력분석 (A PHOTOELASTIC STRESS ANALYSIS IN MANDIBULAR DISTAL - EXTENSION REMOVABLE PARTIAL DENTURES WITH VARIOUSLY DESIGNEO INDIRECT RETAINERS)

  • 강승종;계기성
    • 대한치과보철학회지
    • /
    • 제28권2호
    • /
    • pp.183-197
    • /
    • 1990
  • The purpose of this study was to analyse the magnitude and distribution of stresses using a Photoelastic model from and distal - extension removable partial dentures With four designed indirect retainers. The designs of the indirect retainers were as follows : Design No. 1 : Aker's clasp on 1st bicuspid with no indirect retainer. Design No. 2 : Aker's clasp on 1st bicuspid with indirect retainer on canine. Design No. 3 : Extension of the reciprocal arm of Aker's clasp toward incisal rest on canine. Design No. 4 : Connection with the indirect retainer as in No. 2 and extension of reciprocal arm of Aker' s clasp. A photoelastic model was made of the epoxy resin(PL - 1) and hardner(PLH - 1) and coated with plastic cement -1(PC -1) at the lingual surface of the epoxy model and set with chrome - cobalt partial dentures. A unilateral vertical load of 10kg to the right 1st molar and a vertical load of 10kg to the middle portion of the metal bar crossing both the 1st molars of the right and left, were applied. With the use of specially designed jig, fixture; loading device and the reflective circular polariscope, we obtained the following results : 1. When the unilateral vertical load and the vertical load of the middle portion of the metal bar were applied, design No. 2, 3 and 4 exhibited the higher stress concentration at the root apices and their surrounding tissues of the primary and secondary abutment teeth. 2. When the unilateral vertical load applied to design No. 2,3 and 4 the root apices of the primary and secondary abutment teeth and their surrounding tissues and the nonloaded side of edentulous area exhibited and even stress distribution. 3. When the vertical load was applied, the stress concentration fringe in the primary and secondary abutment teeth was in the order of No. 1,4,2 and 3. 4. No.1 and 4 exhibited the higher distrorted stress concentration at the primary teeth and the edentulous area in the nonloaded side. 5. No.2 design reduced the stresses at the apices of the alveoli of the primary abutment teeth bilaterally as well as on the crest of the residual ridge on the nonloaded side. 6. No. 2 design exhibited the most favorable stress distribution.

  • PDF