• 제목/요약/키워드: absorption of water

Search Result 3,245, Processing Time 0.035 seconds

A Study on the Water Absorption Test of Generator Stator Windings Using Probability Distributions (여러 가지 확률분포를 이용한 발전기 고정자 권선의 흡습 시험에 관한 연구)

  • Kim, Hee-Soo;Bae, Y.C.;Kim, Hee-Jeong;Na, Myung-Hwan
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.5
    • /
    • pp.961-969
    • /
    • 2009
  • Water absorption in water-cooled generator stator windings can cause serious accidents such as insulation breakdown and it brings a generator to the unexpected sudden outage. Accordingly, it is important to diagnose the water absorption of them in the effective operation of power plant. Especially, the capacitance value which is measured for diagnosis is very small so the special diagnosis methods like stochastic theory are needed. KEPRI developed the water absorption test equipment and diagnosis technology for them. In this paper we propose that water absorption test of generator stator windings using probability distributions. The proposed diagnosis technology is applied to the real system and the results of water absorption test for stator windings are agreed to them of water leak test.

Influence of water saturation on fracture toughness in woven natural fiber reinforced composites

  • Kim, Hyo-Jin;Seo, Do-Won
    • Advanced Composite Materials
    • /
    • v.16 no.2
    • /
    • pp.83-94
    • /
    • 2007
  • Woven sisal textile fiber reinforced composites were used to evaluate fracture toughness, tensile and three-point bending. The water absorption testing of all specimens was repeated five times in this study. All specimens were immersed in pure water during 9 days at room temperature, and dried in 1 day at $50^{\circ}C$. Two kinds of polymer matrices such as epoxy and vinyl-ester were used. Fractured surfaces were taken to study the failure mechanism and fiber/matrix interfacial adhesion. It is shown that it can be enhanced to improve their mechanical performance to reveal the relationship between fracture toughness and water absorption fatigue according to different polymer matrices. Water uptake of the epoxy composites was found to increase with cycle times. Mechanical properties are dramatically affected by the water absorption cycles. Water-absorbed samples showed poor mechanical properties, such as lower values of maximum strength and extreme elongation. The $K_{IC}$ values demonstrated a decrease in inclination with increasing cyclic times of wetting and drying for the epoxy and vinyl-ester.

Effect of fibre loading and treatment on porosity and water absorption correlated with tensile behaviour of oil palm empty fruit bunch fibre reinforced composites

  • Anyakora, Anthony N.;Abubakre, Oladiran K.;Mudiare, Edeki;Suleiman, MAT
    • Advances in materials Research
    • /
    • v.6 no.4
    • /
    • pp.329-341
    • /
    • 2017
  • The challenge of replacing conventional plastics with biodegradable composite materials has attracted much attention in product design, particularly in the tensile-related areas of application. In this study, fibres extracted from oil palm empty fruit bunch (EFB) were treated and utilized in reinforcing polyester matrix by hand lay-up technique. The effect of fibre loading and combined influence of alkali and silane treatments on porosity and water absorption parameters, and its correlation with the tensile behaviour of composites was analyzed. The results showed that tensile strength decreased whilst modulus of elasticity, water absorption and porosity parameters increased with increasing fibre loading. The composites of treated oil palm EFB fibre exhibited improved values of 2.47 MPa to 3.78 MPa for tensile strength; 1.75 MPa to 2.04 MPa for modulus of elasticity; 3.43% to 1.68% for porosity and 3.51% to 3.12% for water absorption at respective 10 wt.% fibre loadings. A correlation between porosity and water absorption with tensile behavior of composites of oil palm EFB fibre and positive effect of fibre treatment was established, which clearly demonstrate a connection between processing and physical properties with tensile behavior of fibre composites. Accordingly, a further exploitation of economic significance of oil palm EFB fibres composites in areas of low-to-medium tensile strength application is inferred.

The Effects of Temperature and Water Absorption on Failure Behaviors of Carbon / Aramid Fiber Composites (온도 및 수분이 탄소/아라미드 섬유 복합재의 파손거동에 미치는 영향)

  • Kwon, Woo Deok;Kwon, Oh Heon;Park, Woo Rim
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.4
    • /
    • pp.11-19
    • /
    • 2022
  • This paper presents the effects of high temperature and water absorption on the mechanical behaviors of carbon-aramid fiber composites, specifically their strength, elastic modulus, and fracture. These composites are used in industrial structures because of their high specific strength and toughness. Carbon fiber composites are vulnerable to the impact force of external objects despite their excellent properties. Aramid fibers have high elongation and impact absorption capabilities. Accordingly, a hybrid composite with the complementary properties and capabilities of carbon and aramid fibers is fabricated. However, the exposure of aramid fiber to water or heat typically deteriorates its mechanical properties. In view of this, tensile and flexural tests were conducted on a twill woven carbon-aramid fiber hybrid composite to investigate the effects of high temperature and water absorption. Moreover, a multiscale analysis of the stress behavior of the composite's microstructure was implemented. The results show that the elastic modulus of composites subjected to high temperature and water absorption treatments decreased by approximately 22% and 34%, respectively, compared with that of the composite under normal conditions. The crack behavior of the composites was well identified under the specimen conditions.

The Effect of Geometrical Structure on the Moisture Transport Properties of Nonwoven Batting Materials (부직포 충전재의 구조적 특성이 수분전달 특성에 미치는 영향-단층구조와 이층구조 부직포의 비교-)

  • 김희숙;나미희
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.24 no.6
    • /
    • pp.810-818
    • /
    • 2000
  • The purpose of this study was to analyze the effect of geometrical structure on the moisture transport properties of nonwoven batting materials. Two types of nonwovens were used such as single and double layered nonwovens. Steady and dynamic state water vapor transport properties were measured by absorption, evaporation and cobaltous chloride method respectively. The results of this study were as follows: 1) Geometrical structure affected water vapor evaporation, but there were no differences between single and double layered nonwovens in moisture absorption. Thickness and air permeability were influencing factor on water vapor transport rate. 2) Directionality of double layered nonwoven was observed both in steady and dynamic state moisture transport. There were differences between upper and lower layer of double layered nonwoven both in moisture absorption rate and color change by cobaltous chloride method. 3) In dynamic state of water vapor transport rate, single layered nonwoven reached more rapidly at the established relative humidity. It was confirmed that geometrical structure affected water vapor evaporation and hydrophilicity of fiber affected moisture absorption because there were much more water vapor transport rate by evaporation than absorption within the same period of time.

  • PDF

Water Absorption of Wood Flour-Polypropylene Composites: Effects of Wood Species, Filler Particle Size and Coupling Agent (목분-폴리프로필렌 복합재의 수분흡수율 : 목재수종, 충진제 입자크기 및 상용화제의 영향)

  • Kang, In-Aeh;Lee, Sun-Youn;Doh, Geum-Hyun;Chun, Sang-Jin;Yoon, Seung-Lak
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.4
    • /
    • pp.298-305
    • /
    • 2010
  • The effects of wood species, chemical components, filler loading level, filler particle size, and coupling agent on the water absorption property of the wood flour filled polypropylene (PP) composites were investigated in this study. After 500, 1,000, 1,500, 2,000, 2,500 and 3,000 hr water immersion, Quercus (Quercus accutisima Carr.) and Maackia (Maackia amuresis Rupr. et Maxim) showed significantly lower water absorption properties compared to Larix (Larix kaempferi Lamb.). As wood flour loading increases from 10 to 50 wt%, most wood species showed increased water absorption after a given immersion period. Particle size of wood flour proved to have very significant effects on water absorption of the composites. The effect of coupling agent was positive in terms of lowering water absorption of the composites. As the treatment level of coupling agent increases, the water absorption of the composites decreases. The lowest water absorption was obtained at the lower wood flour loading (Maackia), smaller particle size and by the addition of coupling agent. Thickness swelling of the composites shows close dependency on water absorption.

Mechanical Properties and Absorption of Mortars Containing Hybrid Water-Repellent (하이브리드 발수제를 혼입한 모르타르의 역학적 특성 및 흡수량)

  • Kim, Wan-Su;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.88-89
    • /
    • 2020
  • Research is underway to incorporate water-repellent agents inside mortars to improve the durability of concrete. Therefore, in this study, the mechanical properties and absorption rate were evaluated by adding a hybrid water repellent in which a liquid and a solid were mixed at a constant ratio.As a result of the experiment, the compressive strength of the mortar added with the hybrid water repellent showed a strength reduction of about 5% than the compressive strength of the OPC, and the overall water absorption was lower than that of the water repellent used alone.

  • PDF

A Study on Thermal and Mechanical Properties of Elastic Epoxy with Water Aging (탄성형 에폭시의 흡습 열화에 따른 열적 및 기계적 특성에 관한 연구)

  • 이관우;민지영;한기만;최용성;박대희
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.6
    • /
    • pp.293-299
    • /
    • 2004
  • In this paper, thermal and mechanical properties of electric epoxy with water aging were discussed. We made elastic epoxy specimen adding a ratio of 0〔phr〕20〔phr〕, 35〔phr〕 and 53〔phr〕 with modifier to existing epoxy. We studied mechanical property of elastic resin after absorption in water from 0 to 484 hours. As a result, diffusion factor of elastic epoxy showed 20-21${\times}$10$^{-4}$ $\textrm{mm}^2$/s and general epoxy showed 9.5${\times}$10$^{-4}$ $\textrm{mm}^2$/s. Elastic property increased linearly according to addiction and decreased according to water absorption. Tensile strength was reduced according to addition. It was affected by water absorption of micro-void of elastic epoxy. Hardness inclined to decrease after increasing according to absorbed time. In water-absorption state, it was experimented a change of heat flow by temperature of elastic epoxy and change of thermal expansion coefficient. DSC (Differential Scanning Calorimetry) and TMA (Thermomechanical Analysis) equipments were used to measure Tg. A temperature ringe of DSC was from -0($^{\circ}C$) to 200($^{\circ}C$). One of TMA was from -0($^{\circ}C$) to 350($^{\circ}C$). In addition, we investigated structural analysis of water absorbed specimen using SEM (Scanning Electron Microscope).

Water absorption characteristics of artificial lightweight aggregates preparedby pre-wetting (프리웨팅된 인공경량골재의 흡수 특성)

  • Kim, Yoo-Taek;Jang, Chang-Sub;Ryu, Yug-Wang
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.2
    • /
    • pp.82-86
    • /
    • 2011
  • Lightweight aggregate which is composed of sintered polycrystalline materials usually has a certain portion of pores inside of it. Because of such a structural characteristics, it tends to that movement of water in aggregate shows an abnormal behavior against the change of outside environment. In general, water movement behavior is controlled by porosity, distribution of pore size; however, dense surface layer will also affect water movement behavior in case of artificially sintered aggregates. Factors affecting water movement behavior in the aggregate are pore distribution, pore shape, pre-wetting method, etc. In this study, absorption characteristics of aggregate under the pressure and absorption rate according to water dipping time are analyzed for the basis of pressure pumping of lightweight concrete. Two kinds of aggregates were used for the test: one is made by 'L' company in Germany and the other is of our own made at the pilot plant in Kyonggi University. Absorption rate of aggregate is measured according to water dipping time, vacuum pressure, and quenching condition. Absorption rate of aggregate with $300^{\circ}C$ quenching is higher than that of aggregate with 24 hr water dipping. Generally the more vacuum the higher water absorption rate. Water absorption rate of 'L' aggregate under -300 mmHg is 54 % higher than that of aggregate with 24 hr water dipping; however, only 2 % increase in water absorption was measured for the K622 and K73 which were of our own.