• Title/Summary/Keyword: absorption coefficient (a)

Search Result 845, Processing Time 0.028 seconds

Sound Absorption Characteristics of Permeable Membrane (통기성을 갖는 막재료의 흡음특성)

  • Jeong, Jeong-Ho;Kim, Jung-Joong;Kim, Ku-Je
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.270-275
    • /
    • 2009
  • Sound absorption characteristics of membrane system which are used in stadiums and arenas were investigated. Theoretical studies on acoustic properties of single and double leaf permeable membrane conducted. Also, experimental studies on sound absorption characteristics of combined membrane system that is composed of outer and inner membrane material were conducted. In this study, sound absorption characteristics of each membrane were investigated by experiments in reverberation chamber. 4 types of permeable membranes and a non-permeable membrane were used for experiments. Air space behind membrane material and tension on the membrane was varied. Sound absorption performance of permeable membrane materials was confirmed. As increasing air space behind the membrane material, sound absorption coefficient was increased. In a resonance absorption frequency band sound absorption coefficient varied more dramatically. Sound absorption characteristics were flat in mid and high frequency range and sound absorption coefficient was from 0,3 to 0,5. Also sound absorption coefficient was increased by the increment of surface density and air permeability of membrane. However, over the certain value of air permeability, sound absorption coefficient was decreased. These results can be used as design factors and method for the room acoustic design of dome-stadiums and large free-form buildings.

  • PDF

A Study on the Shock Absorption Performance of the Safety Helmet using Coefficient of Restitution (반발계수를 이용한 안전모의 충격 흡수 성능에 관한 연구)

  • Shin, Woon-Chul
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.5
    • /
    • pp.30-34
    • /
    • 2012
  • A safety helmet is a personal protective equipment to protect the head from falling and flying objects. A safety helmet has the maximum delivered impact force as shock absorption performance, the lower delivered impact force the better performance, which was not a controlled variety during manufacturing safety helmet. Accordingly there were some difficulties in establishing the standard for improved performance as there was not a clear controllable impact force for improved performance. In this study the shock absorption performance was intended to be found as coefficient of restitution related to impulse. As a research method, a coefficient of restitution during the absorption of shock was calculated using the impulse transferred to pharynx utilizing the safety helmet shock absorption performance testing device based on the theory of momentum and impulse. The estimated impulsive force curve was derived assuming that shock was not absorbed using the measured data. The sample was selected as tested goods of ABS material for safety certification available mainly in the market. As a result of study, the maximum delivered impact force of safety helmet made by a domestic safety certified a company was 735 N, and its coefficient of restitution proved to be 0.64. The smaller coefficient of restitution is, the lower maximum delivered impact force and the higher shock absorption performance. The coefficient of restitution can be used as a performance index of safety helmet.

A Study on the Sound Absorption Coefficient by Varying Sample Size (시편의 크기에 따른 흡음계수 변화 연구)

  • 정성수;이우섭;조문재;서상준
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.5
    • /
    • pp.83-88
    • /
    • 2001
  • The sound absorption coefficient of glass wool (bulk density of 48 kg/m:1 and 32 kg/m7) was measured by reverberation room method as varying their cross-sectional area. The results show that the absorption is larger for smaller samples because of edge effect. The absorption coefficient with two different kinds of sources. 1/.7-octave band and while noise, gives similar values.

  • PDF

A Study on the Characteristic of Sound Absorption of Flyash Blocks (Flyash를 이용한 블록의 흡음특성에 관한 연구)

  • 변홍식;이태관
    • Journal of Environmental Science International
    • /
    • v.11 no.3
    • /
    • pp.235-240
    • /
    • 2002
  • The blocks using flyash were prepared in this study. The characteristic of sound absorption of flyash block was investigated. It was revealed that the chemical additives and flyash played an important role to determine the characteristic of sound absorption. Chemical additive affects the capability of sound absorption while flyash affects the characteristic of sound absorption, i.e. high value of the sound absorption coefficient at the specific frequencies(1KHz and 2KHz). The flyash block showed higher sound absorption coefficient than that of the commercial concrete block having carpet on the surface. It was also shown that the sound absorption coefficient increases with increase of the content of flyash in the block. However, it was found that the 70wt% of flyash in the flyash block was the optimum content to obtain the highest sound absorption coefficient.

Measurements of scattering and absorption coefficients of diffusers with variation of surface area (확산체의 표면적 변화에 따른 흡음 및 확산계수 측정)

  • Kumar P., Senthil;Kim, Yong-Hee;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.983-986
    • /
    • 2007
  • The absorption power of a surface depends on the surface irregularity which has been known as an important factor in determining scattering coefficient. This study investigates the effect of increase in surface area on the absorption and scattering coefficients of a diffuse surface. The surface irregularity or surface pattern can be compared to the wavelengths and the random-incidence scattering coefficient of surface is measured by ISO 17497-1. The scattering coefficients of increasing the surface area in linear pattern of v-cut groove on rubber plate were measured in 1:10 scale model reverberation chamber. It is found that the scattering and absorption coefficients increase with increasing surface area. At 60% of increased surface area the spacing between the hemisphere diffuser and the v-cut groove acts similar with results of absorption coefficient. The results show that absorption coefficient depends on surface area and the spacing where as scattering coefficient depends on surface area and texture.

  • PDF

A study on the improvement of sound absorption coefficient of an honeycomb panel by the core resonance (코어공명을 이용한 허니콤패널의 흡음율 개선에 관한 연구)

  • Yu, Y.H.
    • Journal of Power System Engineering
    • /
    • v.12 no.4
    • /
    • pp.46-51
    • /
    • 2008
  • Honeycomb panel has a constructive advantage because it is constructed with a honeycomb core, so it has relatively higher strength ratio to weight. Therefore honeycomb panel has been used as the light weight panels in the high-speed railway technology and high-speed ship like as cruise yachts. Also it has been used in the aircraft and aerospace industry as a structural panel because light weight structure is indispensible in that field of industry. Recently, the honeycomb panel is embossed in the viewpoints of high oil prices as the lightweight panel of the transport machine, however the sound insulation capacity of the honeycomb panel is poorer than those of uniform and another sandwich panels. In this paper a method to improving the sound absorption coefficient of a honeycomb panel Is studied by using the Helmholtz resonator. The sound absorption coefficients for some kinds of honeycomb cores are demonstrated by the normal incident absorption coefficient method.

  • PDF

ChlorophyII and suspended sediment specific absorption coefficient in the sea.

  • Ahn, Yu-Hwan;Moon, Jeong-Eon
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.399-403
    • /
    • 1998
  • Absorption coefficient per mass unit of particles, specific absorption coefficient, is one of main parameters in developing algorithms for ocean color remote sensing. Specific absorption coefficient of chlorophyll (a$^*_{ph}$) and suspended sediment (SS) were analyzed by "wet filter technique" and "Kishino method" for data sets observed in the Yellow and Mediterranean Seas. A new data-recovering method for the filter technique was also developed using spectrum slopes. This method recovered the baseline of spectrum that was often missed in the Kishino method. High a$^*_{ph}$($\lambda$) values in the oligotrophic Mediterranean Sea and low values in the Yellow Sea were observed, spanning over the range of 0.02 to 0.12 $m^2$/mg, at the chlorophyll maximum absorption wavelength 440nm. The empirical relationship between a$^*_{ph}$ and chlorophyll concentration was found to fit a power function, which was slightly different from that proposed by Bricaud et ai. (1995). Absorption specific coefficients for suspended sediment (a$^*_{SS}$) didn't show any relationship with concentrations of suspended sediment. However, the average value of a$^*_{SS}$ at 440nm was close to the specific absorption coefficient of soil (loess) measured by Ahn (1990). The more-pronounced variability of a$^*_{SS}$ than a$^*_{ph}$ perhaps can explain more wide range of size-distribution for SS, which were determined by their specific gravity and agitation of water mass in the sea surface.

  • PDF

A study on the new absorption material for anechoic water tank (무향수조를 위한 흡음재질에 관한 연구)

  • Kim, Sung-Boo;Lee, Jong-Kyu
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.48 no.2
    • /
    • pp.174-179
    • /
    • 2012
  • A new absorption material, cellulose sponge soaked in cement, was made for anechoic water tank and its acoustical properties were investigated by pulse methods. The sound absorption coefficient a (dB/cm) of the material was obtained in the frequency range of 40~120kHz from the echo reduction ER (dB) and insertion loss IL (dB) data. The result was averagely 1.8dB/cm higher than the sound absorption coefficient a (dB/cm) of cork-filled rubber which is one of the most effective absorption materials. The wedge (1.2~5.0cm long) type absorption tiles were made with this new material. The echo reduction ER (dB) of the absorption tile with 5.0cm wedge measured in water tank was higher than 20dB in the experimental frequency range.

An experimental study on Influence of Permeability on corrosion of reinforced Concrete (철근콘크리트의 부식에 영향을 미치는 물질 투과성능에 관한 실험적 연구)

  • 김용로;김영덕;조봉석;장종호;권영진;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.62-65
    • /
    • 2003
  • In this study, to confirm corrosion of reinforced concrete affected by carbonation, chloride ion diffusion, absorption ratio, air permeability, measured carbonation velocity coefficient, chloride ion diffusion coefficient, absorption coefficient, air permeability coefficient. Corrosion velocity under environment of complex deterioration. And than compared corrosion velocity with these coefficients. As the results of this study, the correlation coefficient between chloride ion diffusion coefficients and absorption coefficient was revealed that it is very high. As well, an increase in carbonation, chloride ion diffusion also increases corrosion velocity. It showed that corrosion velocity was affected by the carbonation, chloride ion diffusion, absorption ratio, air permeability. Generally, data on the development of these coefficient made with none, organic B, organic A, inorganic B, and inorganic A is shown. It showed that coating of surface prevent steel bar from deteriorating.

  • PDF

A Study on the Noise Absorption of Textiles for Interiors (실내장식용 섬유소재의 흡음성에 관한 연구)

  • Choi, In-Ryu;Bang, Hey-Kyong
    • The Research Journal of the Costume Culture
    • /
    • v.20 no.4
    • /
    • pp.475-484
    • /
    • 2012
  • The purpose of this study is to help to prevent daily noises by measuring the noise absorption coefficient of the non-woven fabrics and wallpapers which are commonly used in lining and noise absorption coefficient of lining curtain. Seven types of fiber materials for the interior decoration, one non-woven fabric for the wallpaper linings, and two types of textiles for curtain linings are used as the experimental materials in this study. The noise absorption coefficient of the noise absorbents were measured by using impedance tube. And the thermal transmittance were measured by using thermal transmittance tester. The results of this study are as follows; Observing the noise absorption efficiency of each experimental materials, the combination of fiber materials and linings, the noise absorption efficiency of cotton, polyester and silk were similar and for the experimental materials of flax, rayon, acrylic and nylon were resulted the similar noise absorption efficiency. The result of combination of fiber material and black fabric was highest among the combined linings. For the combination of fiber material and non-woven fabric, double layers of non-woven fabric resulted slightly higher noise absorption coefficient result than single layer of non-woven fabric. The thermal transmittance and the sound absorbents of experimental materials were affected by the thickness, density and layer of air of the experimental materials.