• 제목/요약/키워드: absorption and scattering coefficient

검색결과 55건 처리시간 0.03초

Synthesis, physical, optical and radiation shielding properties of Barium-Bismuth Oxide Borate-A novel nanomaterial

  • B.M. Chandrika;Holaly Chandrashekara Shastry Manjunatha;K.N. Sridhar;M.R. Ambika;L. Seenappa;S. Manjunatha;R. Munirathnam;A.J. Clement Lourduraj
    • Nuclear Engineering and Technology
    • /
    • 제55권5호
    • /
    • pp.1783-1790
    • /
    • 2023
  • Barium Bismuth Oxide Borate (BBOB) has been synthesized for the first time using solution combustion technique. SEM analysis reveal flower shape of the nanoparticles. The formation of the nanoparticles has been confirmed through XRD & FTIR studies which gives the physical and chemical structure of the novel material. The UV light absorption is observed in the range 200-300 nm. The present study highlights the radiation shielding ability of BBOB for different radiations like X/Gamma rays, Bremsstrauhlung and neutrons. The gamma shielding efficiency is comparable to that of lead in lower energy range and lesser than lead in the higher energy range. The bremsstrauhlung exposure constant is comparably larger for BBOB NPs than that of concrete and steel however it is lesser than that of lead. The beauty of BBOB nanoparticles lies in, high absorption of radiations and low emission of secondary radiations when compared to lead. In addition, the neutron shielding parameters like scattering length, absorption and scattering cross sections of BBOB are found to be much better than lead, steel and concrete. Thus, BBOB nanoparticles are highly efficient in absorbing X/Gamma rays, neutrons and bremsstrauhlung radiations.

심층 레지스터 구조를 이용한 서브미크론 상층패턴 형성 (Formation of Submicron Top Pattern by using Tri-Layer Resist Structure)

  • 심규환;양전욱;이진희;강진영;마동성
    • 대한전자공학회논문지
    • /
    • 제25권5호
    • /
    • pp.495-500
    • /
    • 1988
  • The effectiveness of tri layer resist (TLR) technique is compared with that of single layer resist (SLR) technique in order to make a 0.8um pattern with the linewidth deviation of 10 percents. SLR technique is not appropriate to shape the micro-pattern on oxide and aluminum steps because of the standing wave effect and the light scattering effect in shaping the resist pattern. On the contrary, the uniform line with a width of 0.8um on oxide and aluminum steps can be formed by TLR technique, reducting such effects. The planarization and the light absorption coefficient of the bottom layer resist in TLR are optimized by exposing it to ultra violet light after baking it for 30min at 230\ulcorner. An uniform line with a width of 0.8um on oxide step is defined with the light absorption coefficient of 0.85 whereas that on aluminum step is defined with 0.95.

  • PDF

Angular Dispersion-type Nonscanning Fabry-Perot Interferometer Applied to Ethanol-water Mixture

  • Ko, Jae-Hyeon;Kojima, Seiji
    • Journal of the Optical Society of Korea
    • /
    • 제13권2호
    • /
    • pp.261-266
    • /
    • 2009
  • The angular dispersion-type non-scanning Fabry-Perot was applied to an ethanol-water mixture in order to investigate its acoustic properties such as the sound velocity and the absorption coefficient. The scattered light from the mixture was analyzed by using the charge-coupled-device area detector, which made the measurement time much shorter than that obtained by using the conventional scanning tandem multi-pass Fabry-Perot interferometer. The sound velocity showed a deviation from ultrasonic sound velocities at low temperatures accompanied by the increase in the absorption coefficient, indicating acoustic dispersion due to the coupling between the acoustic waves and some relaxation process. Based on a simplified viscoelastic theory, the temperature dependence of the relaxation time was obtained. The addition of water molecules to ethanol reduced the relaxation time, consistent with dielectric measurements. The present study showed that the angular dispersion-type Fabry-Perot interferometer combined with an area detector could be a very powerful tool in the real-time monitoring of the acoustic properties of condensed matter.

복사열전달을 동반하는 다공성 매질내의 예혼합 화염 (The Premixed Flame in a Radiatively Active Porous Medium)

  • 김정수;백승욱
    • 대한기계학회논문집
    • /
    • 제13권2호
    • /
    • pp.265-270
    • /
    • 1989
  • 본 연구에서는 복사강도를 반구에 대하여 적분하여 비정상 미분방정식의 형태로 로 얻어지는 2-유속 회매질복사모델을 사용하여 복사전달방정식을 구성하고, 전술한 Yoshizawa 등의 가정을 배제하면서, 다공매질의 물리적 길이, 흡수계수 및 혼합기체의 당량비(equivalenceratio) 등을 변화시킴으로써 매질 내의 열적 구조를 분석하여 그들의 의 연구를 확장, 해석한다.

내열성 세라믹스 재료의 분광복사특성 (Spectral Radiative Characteristics of Heat Resisting Ceramics Materials)

  • 상희선
    • 한국산업융합학회 논문집
    • /
    • 제4권1호
    • /
    • pp.35-40
    • /
    • 2001
  • A spectral measurement system for reflection and transmission properties by using an optical fiber and an ellipsoidal mirror was newly developed. The hemispherical reflectance and transmittance spectra of several heating resisting ceramics materials were measured from visible to middle infrared region. The directional characteristics of reflection and transmission were also investigated in consideration of the absorptance. The measured data were analyzed by using a four flux model of radiation transfer, The radiation properties could be estimated by the obtained scattering and absorption coefficient spectra.

  • PDF

경골 손상 치료에서의 침습형 저출력 레이저 치료법 및 효과 (A Method and Effect for Tibial Defect Treatment Using Interstitial Low Level Laser)

  • 이상엽;황동현;김한성;정병조
    • 대한의용생체공학회:의공학회지
    • /
    • 제37권4호
    • /
    • pp.147-151
    • /
    • 2016
  • Tibial defect, or fracture is very routine musculoskeletal case which brings fully uncomfortable and painful situations to patient. Moreover, it has long hospitalization period because of its risk of non-union. There are many studies using ultrasound, vibration, and laser for bone regeneration to figure out fast bone healing. Among them, Low Level Laser Therapy (LLLT) is already known that it is very easy to treat and may have positive effect for bone regeneration. However, LLLT has uncertain energy dose because of scattering and absorption of laser in tissue. In this study, we used interstitial LLLT to treat tibial defect in animal study. The Interstitial LLLT can overcome some limitations caused by laser scattering or absorption in tissue medium. The results were evaluated using u-CT which can calculate X-ray attenuation coefficient and bone volume of bone defect area. These results showed that interstitial LLLT may affect fast bone healing process in early phase.

APPLICATION OF TIME-OF-FLIGHT NEAR INFRARED SPECTROSCOPY TO WOOD

  • Tsuchikawa, Satoru;Tsutsumi, Shigeaki
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.1182-1182
    • /
    • 2001
  • In this study, the newly constructed optical measurement system, which was mainly composed of a parametric tunable laser and a near infrared photoelectric multiplier, was introduced to clarify the optical characteristics of wood as discontinuous body with anisotropic cellular structure from the viewpoint of the time-of-flight near infrared spectroscopy (TOF-NIRS). The combined effects of the cellular structure of wood sample, the wavelength of the laser beam λ, and the detection position of transmitted light on the time resolved profiles were investigated in detail. The variation of the attenuance of peak maxima At, the time delay of peak maxima Δt and the variation of full width at half maximum Δw were strongly dependent on the feature of cellular structure of a sample and the wavelength of the laser beam. The substantial optical path length became about 30 to 35 times as long as sample thickness except the absorption band of water. Δt ${\times}$ Δw representing the light scattering condition increased exponentially with the sample thickness or the distance between the irradiation point and the end of sample. Around the λ=900-950 nm, there may be considerable light scattering in the lumen of tracheid, which is multiple specular reflection and easy to propagate along the length of wood fiber. Such tendency was remarkable for soft wood with the aggregate of thin layers of cell walls. When we apply TOF-NIRS to the cellular structural materials like wood, it is very important to give attention to the difference in the light scattering within cell wall and the multiple specular-like reflections between cell walls. We tried to express the characteristics of the time resolved profile on the basis of the optical parameters for light propagation determined by the previous studies, which were absorption coefficient K and scattering coefficient S from Kubelka-Munk theory and n from nth power cosine model of radiant intensity. The wavelength dependency of the product of K/S and n, which expressed the light-absorbing and -scattering condition and the degree of anisotropy, respectively, was similar to that of the time delay of peak maxima Δt. The variation of the time resolved profile is governed by the combination of these parameters. So, we can easily find the set of parameters for light propagation synthetically from Δt.

  • PDF

CdS 박막의 구조적 및 광학적 물성에 미치는 아르곤 및 질소 이온 주입 효과 (Argon and Nitrogen Implantation Effects on the Structural and Optical Properties of Vacuum Evaporated Cadmium Sulphide Thin Films)

  • 이준신;이재형
    • 한국전기전자재료학회논문지
    • /
    • 제15권6호
    • /
    • pp.471-478
    • /
    • 2002
  • Vacuum evaporated cadmium sulphide (CdS) thin films were implanted with $Ar^+$ and $N^+$ for different doses. The properties of the ion implanted CdS thin films have been analysed using XRD, optical transmittance spectra, and Raman scattering studies. Formation of Cd metallic clusters were observed in ion implanted films. The band gap of $Ar^+$ doped films decreased from 2.385 eV of the undoped film to 2.28 eV for the maximum doping. In the case of $N^+$ doped film the band gap decreased from 2.385 to 2.301 eV, whereas the absorption coefficient values increased with the increase of implantation dose. On implantation of both types of ions, the Raman peak position appeared at $299\textrm{cm}^{-1}$ and the FWHM changed with the ion dose.

방사와 투과를 이용한 층류확산화염내 매연입자의 온도 및 농도 측정 (Soot Temperature and Concentration Measurement Using Emission/Transmission Tomography in Laminar Diffusion Flame)

  • 송상종;박성호;김상수
    • 대한기계학회논문집
    • /
    • 제17권10호
    • /
    • pp.2563-2573
    • /
    • 1993
  • The measurements of monochromatic line-of-sight flame emission and light transmission in the same path having small spatial resolution were performed in an axisymmetric laminar propane $C_{3}H_{8}$ diffusion flame. The light wavelengthes of 632 nm, 800nm, 900nm were used. From these measurements, local point soot radiances (by Kirchhoff's law) and absorption coefficients were reconstructed by tomography. Thus local point soot temperatures and concentrations were obtained. The reconstructed soot temperatures and concentrations of local points have no differences between the case of visible range (632 nm) and the case of infrared range (800 nm and 900 nm). In these ranges, the scattering coefficient is much lower than the absorption coefficient. Soot mean temperature over the path also matches well with local soot temperature in outer region of the flame. Temperature measurement by thermocouple with different bead diameters $(222{\mu}m and 308{\mu}m)$ was carried in the same flame. Rapid insertion technique was used and radiation effect was considered. Radiation correction in the sooting region was carried out and the corrected result was in good agreement with the local soot temperature.

Novel Optical Properties of Si Nanowire Arrays

  • Lee, Munhee;Gwon, Minji;Cho, Yunae;Kim, Dong-Wook
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.179.1-179.1
    • /
    • 2014
  • Si nanowires have exhibited unique optical characteristics, including nano-antenna effects due to the guided mode resonance, significant optical absorption enhancement in wide wavelength and incident angle range due to resonant optical modes, graded refractive index, and scattering. Since Si poor optical absorption coefficient due to indirect bandgap, all such properties have stimulated proposal of new optoelectronic devices whose performance can surpass that of conventional planar devices. We have carried out finite-difference time-domain simulation studies to design optimal Si nanowire array for solar cell applications. Optical reflectance, transmission, and absorption can be calculated for nanowire arrays with various diameter, length, and period. From the absorption, maximum achievable photocurrent can be estimated. In real devices, serious recombination loss occurring at the surface states is known to limit the photovoltaic performance of the nanowire-based solar cells. In order to address such issue, we will discuss how the geometric parameters of the array can influence the spatial distribution of the optical field (resulting optical generation rate) in the nanowires.

  • PDF