• Title/Summary/Keyword: absorber layer

Search Result 192, Processing Time 0.03 seconds

Inductively coupled plasma etching of SnO2 as a new absorber material for EUVL binary mask

  • Lee, Su-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.124-124
    • /
    • 2010
  • Currently, extreme ultraviolet lithography (EUVL) is being investigated for next generation lithography. EUVL is one of competitive lithographic technologies for sub-22nm fabrication of nano-scale Si devices that can possibly replace the conventional photolithography used to make today's microcircuits. Among the core EUVL technologies, mask fabrication is of considerable importance due to the use of new reflective optics having a completely different configuration compared to those of conventional photolithography. Therefore, new materials and new mask fabrication process are required for high performance EUVL mask fabrication. This study investigated the etching properties of SnO2 (Tin Oxide) as a new absorber material for EUVL binary mask. The EUVL mask structure used for etching is SnO2 (absorber layer) / Ru (capping / etch stop layer) / Mo-Si multilayer (reflective layer) / Si (substrate). Since the Ru etch stop layer should not be etched, infinitely high selectivity of SnO2 layer to Ru ESL is required. To obtain infinitely high etch selectivity and very low LER (line edge roughness) values, etch parameters of gas flow ratio, top electrode power, dc self - bias voltage (Vdc), and etch time were varied in inductively coupled Cl2/Ar plasmas. For certain process window, infinitely high etch selectivity of SnO2 to Ru ESL could be obtained by optimizing the process parameters. Etch characteristics were measured by on scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) analyses. Detailed mechanisms for ultra-high etch selectivity will be discussed.

  • PDF

Design of Ferrite Electromagnetic Wave Absorber for Anechoic Chamber (전파무향실용 페라이트 전파흡수체의 설계)

  • 김동일;이창우;김하근;전상엽;정세모
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.1
    • /
    • pp.43-50
    • /
    • 1999
  • Electromagnetic wave absorbers for anechoic chamber are needed to broaden the useful frequency bandwidth, reduce the thickness, and decrease the weight. There are various absorbers proposed for the above conditions, but they could not decisively solve the above requirements. The Electromagnetic wave absorber made by a conventional ferrite tile has, for example, broadened the useful frequency bandwidth by the way of forming air layer. Therefore, an air layer is formed absorber between a reflection plate and a sintered Ni-Zn ferrite tile of 7 mm in thickness, which has reflectivity less than -20 dB from 30 MHz to 450 MHz in frequency band, far narrower than the aimed bandwidth. The purpose of this paper is on the development of a universal anechoic chamber for measuring radiated electromagnetic wave or immunity of electronic equipments, GTEM-cell, wall material for prevention of TV ghost, etc. Accordingly, in this paper, a broadened electromagnetic wave absorber is designed, which has the reflection characteristics less than -20 dB from 30 MHz to 5,430 or 8,000 MHz in the bandwidth. Then we will design a super broadband electromagnetic wave absorber by inserting square Ferrite Cylinders Type with the thickness less than 23.5 m in three-layed type and with the frequency band from 30 MHz to 5,430-8,000 MHz under the above tolerance limits.

  • PDF

Design on a new oil well test shock absorber under impact load

  • Wang, Yuanxun;Zhang, Peng;Cui, Zhijian;Chen, Chuanyao
    • Structural Engineering and Mechanics
    • /
    • v.28 no.3
    • /
    • pp.335-352
    • /
    • 2008
  • Continuous operation of test and measurement is a new operating technique in the petroleum exploitation, which combines perforation with test and measurement effectively. In order to measure the original pressure of stratum layer exactly and prevent testing instrument from being impaired or damaged, a suitable shock absorber is urgently necessary to research. Based on the attempt on the FEM analysis and experiment research, a new shock absorber is designed and discussed in this paper. 3D finite element model is established and simulated accurately by LS-DYNA, the effect and the dynamic character of the shock absorber impact by half sinusoidal pulse force under the main lobe frequency are discussed both on theoretics and experiment. It is shown that the new designed shock absorber system has good capability of shock absorption for the impact load.

Design of Broadband Electromagnetic Wave Absorber with Square Ferrite Cylinders in the Second Layer (초광대역특성을 갖는 정방형 페라이트 기둥구조의 전파흡수체 설계법)

  • 김동일;전상엽;이창우;정세모
    • Journal of the Korean Institute of Navigation
    • /
    • v.19 no.2
    • /
    • pp.99-106
    • /
    • 1995
  • A wide band design method of an electromagnetic wave absorber with square ferrite cylinders in the second layer, which has very wide band frequency characteristics, is proposed and discussed. A theoretical model using the equivalent material constants method is also evaluated and proposed for its accuracy by comparison with Hashin-Shtrikman formulas. Based on the developed model, wide band electromagnetic wave absorbers with excellent reflective frequency characteristics in the frequency range of 30MHz to 3, 690MHz were designed.

  • PDF

Preparation and Characteristics of CIGS nanopowder (CIGS nanopowder 제조 및 특성분석)

  • Ham, Chang-Woo;Suh, Jeong-Dae;Cho, Jung-Min;Song, Ki-Bong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.371-372
    • /
    • 2009
  • We have prepared and characterized CIGS nanopowder for absorber layer of photovoltaic. CIGS nanopowder were obtained at $260^{\circ}C$ for 6 hours from the reaction of $CuCl_2$, $InCl_3$, $GaCl_3$ and Se powder in solvent. The CIGS nanopowder were identified to have a typical chalcopyrite tetragonal structure by using X-ray diffraction(XRD), Inductively Coupled Plasma Auger Electron Spectroscopy (AES), Scanning Electron Microscopy(SEM).

  • PDF

Linear Source for Evaporating Large Area CIGS Absorber Layer (대면적 CIGS 광흡수층 증착을 위한 선형증발원 개발)

  • Seo, J.H.;Jung, S.W.;Lee, W.S.;Choi, Y.S.;Choi, M.W.;Choi, J.C.;Jeong, K.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • In this paper, to develop linear source for evaporating $600{\times}1,200mm$ size of large area CIGS absorber layer, we simulated linear thermal source and obtained ${\pm}5%$ thickness uniformity with various nozzle sizes and regular nozzle distance. Flux density was confirmed linear source length. Using this linear source, we tested thickness uniformity of Copper, Indium single layer which was obtained Cu ${\pm}5%$ and In ${\pm}5%$ thickness uniformity. And then CIGS absorber layers were evaporated with In-line single-stage co-evaporation. Large area CIGS absorber layers were confirmed composition uniformity of $$Cu{\leq_-}5%$$, $$In{\leq_-}7%$$, $$Ga{\leq_-}4%$$, $$Se{\leq_-}3%$$ with 600 mm width by XRF. Uniform shape of CIGS absorber layers was confirmed by SEM. XRD showed peaks which indicate chalcopyrite structure of CIGS absorber layers. Thus, developed linear source is suitable for evaporating CIGS absorber layer.

A Study on Design of Broadband Electromagnetic Wave Absorber for Single Polarization (단일편파용 광대역 전파흡수체의 설계에 관한 연구)

  • 김동일;이수영;정세모
    • Journal of the Korean Institute of Navigation
    • /
    • v.19 no.4
    • /
    • pp.93-102
    • /
    • 1995
  • A design method of an electromagnetic wave absorber with ferrite fins in the second layer, which has very wide band frequency characteristics, is proposed and discussed. A theoretical model using the equivalent material constants method is adopted, assessed for its accuracy by comparision with the Hashin-Shtrikman formulas and compared with the conventional absorbers. Based on the model, a wide band electromagnetic wave absorber with excellent reflectivity frequency characteristics in frequency range of 30MHZ to 3530MHZ has been designed.

  • PDF

Fabrication and Characterizations of CIGS Powder Evaporated Thin Films (CIGS 분말을 이용한 박막제조 및 특성평가)

  • Suh, Jeong-Dae;Song, Ki-Bong;Ham, Chang-Woo;Ahn, Se-Jin;Yoon, Jae-Ho;Yoon, Kyung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.169-171
    • /
    • 2009
  • We have fabricated CIGS thin film absorber layers by the evaporation of CIGS powders which were synthesized by solutions with different atomic ratio compositions. We found that the polycrystalline structural properties and optical properties of the deposited CIGS thin films were strongly dependent on the CIGS powder synthesis solution compositions. For three different solution compositions, Cu:In:Ga:Se= 4:3:1:8, 8:3:1:8, 12:3:1,8, the deposited thin film crystalline structures were varied form InSe crystalline structure to CIGS chalcopyrite structures. Our results showed that CIGS powder evaporation is potential for the one step fabrication process for CIGS thin film absorber layer deposition.

  • PDF

A Study on $[Ni_x-Mg_{0.1}-Zn_{(1-x-0.1)}{\cdot}Fe_2O_4]$-Rubber Composite for Electromagnetic Wave Absorber (전파흡수체용 $[Ni_x-Mg_{0.1}-Zn_{(1-x-0.1)}{\cdot}Fe_2O_4]$-Rubber Composite에 관한 연구)

  • 박연준;김동일
    • Journal of the Korean Institute of Navigation
    • /
    • v.22 no.4
    • /
    • pp.69-75
    • /
    • 1998
  • The super wideband electromagnetic wave absorber in RF-A-PF type has been proposed, which can be used for an anechoic chamber, wall material to prevent TV ghost, etc, In this paper, $Ni_x-Mg_{0.1}-Zn_(1-x-0.1){\cdot}Fe_2O_4$ Ferrite Powder has been fabricated. Using this, then, [$Ni_x-Mg_{0.1}-Zn_(1-x-0.1){\cdot}Fe_2O_4$-Rubber composite for RF-layer in the RF-A-PF type absorber has been fabricated and its characteristics has been analyzed. As a result, it has been shown that the $Ni_x-Mg_{0.1}-Zn_(1-x-0.1){\cdot}Fe_2O_4$-Rubber composit with the quantity $_x$ of $Ni_x$ between 0.5 and 0.6 is suitable for the RF-layer in the case of which the grain size is sub-micrometer order.

  • PDF

A Design of Ferrite Electromagnetic Wave Absorber for Anechoic Chamber (전파무향실용 페라이트 전파흡수체의 설계)

  • 이창우;김동일;김하근
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1998.11a
    • /
    • pp.408-413
    • /
    • 1998
  • Electromagnetic wave absorbers for anechoic chamber are needed to broaden the useful frequency bandwidth, reduce the thickness, and decrease the weight. There are various absorbers proposed for the above conditions, but they could not decisively solve it the alone requirements. The Electromagnetic wave absorber made by a conventional ferrite tile has, for example, broadened the useful frequency bandwidth by the way of forming air layer(practically use urethane foam, etc.) on the ferrite tile. Therefore, an air layer is formed between a reflection plate and a sintered Ni-Zn ferrite tile of 7 mm in thickness, which has reflectivity less than -20 dB from 30 MHz to 600 MHz in bandwidth. Accordingly, in this paper, a broadened electromagnetic wave absorber will be designed, which has the reflection characteristics less than -20 dB from 30 MHz to 6000 MHz in the bandwidth. Then we will design a super broadband electromagnetic wave absorber by inserting square Ferrite Cylinders Type with the thickness less than 11 m and with the frequency band from 30 MHz to 6000 MHz under the above tolerance limits. The purpose of this research is on the development of a universal anechoic chamber for measuring radiated electromagnetic wave or immunity of electronic equipments, GTEM-cell, wall material for prevention TV ghost, etc.

  • PDF