Browse > Article
http://dx.doi.org/10.5757/JKVS.2013.22.1.1

Linear Source for Evaporating Large Area CIGS Absorber Layer  

Seo, J.H. (System Development Team, YAS Co. Ltd.)
Jung, S.W. (System Development Team, YAS Co. Ltd.)
Lee, W.S. (System Development Team, YAS Co. Ltd.)
Choi, Y.S. (System Development Team, YAS Co. Ltd.)
Choi, M.W. (System Development Team, YAS Co. Ltd.)
Choi, J.C. (Department of Physics, Yonsei University)
Jeong, K.H. (Department of Physics, Yonsei University)
Publication Information
Journal of the Korean Vacuum Society / v.22, no.1, 2013 , pp. 1-6 More about this Journal
Abstract
In this paper, to develop linear source for evaporating $600{\times}1,200mm$ size of large area CIGS absorber layer, we simulated linear thermal source and obtained ${\pm}5%$ thickness uniformity with various nozzle sizes and regular nozzle distance. Flux density was confirmed linear source length. Using this linear source, we tested thickness uniformity of Copper, Indium single layer which was obtained Cu ${\pm}5%$ and In ${\pm}5%$ thickness uniformity. And then CIGS absorber layers were evaporated with In-line single-stage co-evaporation. Large area CIGS absorber layers were confirmed composition uniformity of $$Cu{\leq_-}5%$$, $$In{\leq_-}7%$$, $$Ga{\leq_-}4%$$, $$Se{\leq_-}3%$$ with 600 mm width by XRF. Uniform shape of CIGS absorber layers was confirmed by SEM. XRD showed peaks which indicate chalcopyrite structure of CIGS absorber layers. Thus, developed linear source is suitable for evaporating CIGS absorber layer.
Keywords
Large area $Cu(In_{1-x}Ga_x)Se_2$; Copper indium gallium selenium; Linear source; Thermal evaporation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 M. Acciarri, S. Binetti, A. Le Donne, B. Lorenzi, L. Caccamo, L. Miglio, R. Moneta, S. Marchionna, and M. Meschia, Cryst. Res. Technol. 46, 871 (2011).   DOI   ScienceOn
2 S. H. Choi, J. J Park, J. O. Yun, Y. H. Hong, and I. S. Kim, J. Korean Vac. Soc. 21, 142 (2012).   DOI   ScienceOn
3 S. Aksu, J. Wang, and B. M. Basol, Electrochem. Solid-State Lett. 12, D33 (2009).   DOI
4 C. Y. Su, W. H. Ho, H. C. Lin, C. Yo. Neih, and S. C. Liang, Sol. Energ. Mater. Sol. C. 95, 261 (2011).   DOI   ScienceOn
5 J. H. Shi, Z. Q. Li, D. W. Zhang, Q. Q. Liu, Z Sun, and S. M. Huang, Prog. Photovolt: Res. Appl. 19, 160 (2011).   DOI   ScienceOn
6 P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, Prog. Photovolt: Res. Appl. 19, 894 (2011).   DOI   ScienceOn
7 F. Karg, Energy Procedia 15, 275 (2012).   DOI   ScienceOn
8 T. Negami, T. Satoh, Y. Hashimoto, S. Nishiwaki, S. Shimakawa, and S. Hayashi, Sol. Energ. Mater. Sol. C. 67, 1 (2001).   DOI   ScienceOn
9 L. Holland, Vaccum Depositon of Thin Films (Chapman & Hall Ltd., London, 1961), pp. 141-168.