• Title/Summary/Keyword: absolute vehicle speed

Search Result 30, Processing Time 0.021 seconds

Development and Verification of a Dynamic Analysis Model for the Current-Collection Performance of High-Speed Trains Using the Absolute Nodal Coordinate Formulation (절대절점좌표를 이용한 고속철도 집전성능 동역학 해석 모델 개발 및 검증)

  • Lee, Jin-Hee;Park, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.3
    • /
    • pp.339-346
    • /
    • 2012
  • The pre-evaluation of the current-collection performance is an important issue for high-speed railway vehicles. In this paper, using flexible multibody dynamic analysis techniques, a simulation model of the dynamic interaction between the catenary and pantograph is developed. In the analysis model, the pantograph is modeled as a rigid body, and the catenary wire is developed using the absolute nodal coordinate formulation, which can analyze large deformable parts effectively. Moreover, for the representation of the dynamic interaction between these parts, their relative motions are constrained by a sliding joint. Using this analysis model, the contact force and loss of contact can be calculated for a given vehicle speed. The results are evaluated by EN 50318, which is the international standard with regard to analysis model validation. This analysis model may contribute to the evaluation of high-speed railway vehicles that are under development.

Steering Control of the Autonomous Guided Vehicle Driving System for Durability Test

  • Jeong, Jong-Won;Lee, Young-Jin;Yoon, Kang-Sup;Lee, Man-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.104-104
    • /
    • 2000
  • Among durability tests, the accelerated durability test has been widely used to evaluate the durability of vehicle structure and chassis pans in a shon period of time on the designed road which has severe surface conditions. However it increases the drivers fatigue mainly caused by the severe driving conditions. The drivers difficulty of maintaining constant speed and controlling the steering wheel reduces the reliability of test results. The durability test includes the position and distance sensing system for the recognition of the absolute and relative driving position, the driving control system for the control of whole driving circumstance, the emergency system for responding to system errors. AGVDS (Autonomous Guided Vehicle Driving System) was Proved to facilitate the development of now car projects. Therefore the AGVDS we propose will help make the fundamentals for all future traffic systems.

  • PDF

Development and Empirical Validation of an Electric Vehicle Battery Consumption Analysis Model (전기차 배터리 소모량 분석모형 개발 및 실증)

  • In-Seon Suh;Young-Mi Lee;Sang-Yul Oh;Myeong-Chang Gwak;Hyeon-Ji Lee
    • Journal of Environmental Science International
    • /
    • v.33 no.7
    • /
    • pp.523-532
    • /
    • 2024
  • In popular tourist destinations such as Jeju and Gangwon, electric rental cars are increasingly adopted. However, sudden battery drain due to weather conditions can pose safety issues. To address this, we developed a battery consumption analysis model that considers resistive energy factors such as acceleration, rolling resistance, and aerodynamic drag. Focusing on the effects of ambient temperature and wind speed, the model's performance was evaluated during an empirical validation period from November to December 2023. Comparing predicted and actual state of charge (SoC) across different routes identified ambient temperature, wind speed, and driving time as major sources of error. The mean absolute error (MAE) increased with lower temperatures due to reduced battery efficiency. Higher wind speeds on routes 1 and 6 resulted in larger errors, indicating the model's limitation in considering only tailwinds for aerodynamic drag calculations. Additionally, longer driving times led to higher actual SoC than predicted, suggesting the need to account for varying driver habits influenced by road conditions. Our model, providing more accurate SoC predictions to prevent battery depletion incidents, shows high potential for application in navigation apps for electric vehicle users in tourist areas. Future research should endeavor to the model by including wind direction, HVAC system usage, and braking frequency to improve prediction accuracy further.

A Study on the Standard Link-based Travel Speed Calculation System Using GPS Tracking Information (GPS 운행궤적정보를 이용한 표준링크기반 통행속도 산출 시스템 연구)

  • Song, Gil jong;Hwang, Jae Seon;Lim, Jae Jung;Jung, Eui Yong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.5
    • /
    • pp.142-155
    • /
    • 2019
  • This study was conducted with the aim of developing a system to collect taxi GPS probe information to prevent link defects and to improve the accuracy of the standard link-based travel speed by determining when to go into and come out the link. For this purpose, a framework and algorithm consisting of a five-step process for standard link-based map matching and individual vehicle travel speed are presented and used it to calculate the average travel speed of the service link. Two on-site surveys of Teheran and Hakdong-ro were conducted to verify the results by the methods proposed in this paper. On the basis of the overall time of the field survey, the deviation in the travel speed was 0.2 km/h and 0.6 km/h, the accuracy was 99% and 96%, and the MAPE(Mean Absolute Percentage Error) was 1% and 4% in Teheran and Hakdong-ro, respectively. These results were more accurate thand those obtained using conventional methodologies without standard links.

An Experimental Study on the Safety Standard of Electronic Throttle Control System (전자식 가속제어장치 안전기준에 대한 실험적 고찰)

  • Yun, Kyungcheol;Yong, Geejoong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.1
    • /
    • pp.48-54
    • /
    • 2019
  • Optimal engine control is needed to cope with the global environmental regulations that are globally enforced. For optimum engine control, the electronic throttle control system (ETCS) is a prerequisite. Automotive makers are having an effect on reducing emissions and improving fuel economy by applying ETCS which is designed to secure stability. The ETCS controls the output of the throttle valve by passing the output value of the accelerator position sensor (APS) to the engine control unit (ECU). In this study, the authors investigated the safety standards of domestic and overseas accelerator control system and tried to understand how the air flow control affects the engine output by replacing the throttle. The authors suggest an improvement proposal of safety standard based on the result of driving evaluation by various modes.

Estimation of Individual Vehicle Speed Using Single Sensor Configurations (단일 센서(Single Sensor)를 활용한 차량속도 추정에 관한 연구)

  • Oh, Ju-Sam;Kim, Jong-Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3D
    • /
    • pp.461-467
    • /
    • 2006
  • To detect individual vehicular speed, double loop detection technique has been widely used. This paper investigates four methodologies to measure individual speed using only a single loop sensor in a traveling lane. Two methods developed earlier include estimating the speed by means of (Case 1) the slop of inductance wave form generated by the sensor and (Case 2) the average vehicle lengths. Two other methods are newly developed through this study, which are estimations by measuring (Case 3) the mean of wheelbases using the sensor installed traversal to the traveling lane and (Case 4) the mean of wheel tracks by the sensor installed diagonally to the traveling lane. These four methodologies were field-tested and their accuracy of speed output was compared statistically. This study used Equality Coefficient and Mean Absolute Percentage Error for the assessment. It was found that the method (Case 1) was best accurate, followed by method (Case 4), (Case 2), and (Case 3).

A Study on the Development of Sensorless Drive System for Brushless DC Motor of Electrical Vehicle (EV용 브러시리스 직류 전동기의 선서리스 드라이브 개발에 관한 연구)

  • Bae Jong-Pyo;Kim Jong-Sun;Seo Mun-Seok;Yoo Ji-Yoon;Choi Uk-Don;Jeon Se-Bong
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.110-114
    • /
    • 2002
  • Generally, brushless DC motor(BLDCM) driving system uses hall sensors or encoders as the mechanical position or speed sensors. It is necessary to achieve the informations of rotor position for driving trapezoidal type brushless DC motor without any position sensor. This paper proposes a sensorless driving system with rotor absolute position detector circuit which acquires both commutate phase and commutate time by analyzing motor phase voltages. Proposed system is applied to a 10k[W] rating motor which actually used in electrical vehicles of HONDA co.,ltd. The experimental results will show the validity of the proposed system and the practical use of proposed sensorless drive algorithm.

  • PDF

Indoor Precise Positioning Technology for Vehicles Using Floor Marks (플로어 마크를 이용한 차량용 실내 정밀 측위 기술)

  • Park, Ji-hoon;Lee, Jaesung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.10
    • /
    • pp.2321-2330
    • /
    • 2015
  • A variety of studies for indoor positioning are now being in progress due to the limit of GPS that becomes obsolete in the room. However, most of them are based on private wireless networks and the situation is difficult to commercialize them since they are expensive in terms of installation and maintenance costs, non-real-time, and not accurate. This paper applies the mark recognition algorithm used in existing augmented reality applications to the indoor vehicle positioning application. It installs floor marks on the ground, performs the perspective transformation on it and decodes the internal data of the mark and, as a result, it obtains an absolute coordinate. Through the geometric analysis, it obtains current position (relative coordinates) of a vehicle away from the mark and the heading direction of the vehicle. The experiment results show that when installing the marks every 5 meter, an error under about 30 cm occurred. In addition, it is also shown that the mark recognition rate is 43.2% of 20 frames per second at the vehicle speed of 20km/h. Thus, it is thought that this idea is commercially valuable.

Lifetime Prediction of Rubber Pad for High Speed Railway Vehicle (고속철도용 레일패드 노후화 정량화 방안 연구)

  • Woo, Chang-Su;Choe, Byeong-Ik;Park, Hyun-Sung;Yang, Shin-Chu;Jang, Sung-Yep;Kim, Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.8
    • /
    • pp.739-744
    • /
    • 2009
  • Rail-pad is an important and readily replaceable component of a railway track, as it is the elastic layer between the rail and the sleeper. Characteristics and useful lifetime prediction of rail-pad was very important in design procedure to assure the safety and reliability. In this paper, the degradation of rail pad properties as a function of their in-service life is studied with a view of developing a technique for predicting the optimum period of track maintenance with regard to pad replacement. In order to investigate the useful lifetime, the accelerate test were carried out. Accelerated test results changes as the threshold are used for assessment of the useful life and time to threshold value were plotted against reciprocal of absolute temperature to give the Arrhenius plot. By using the acceleration test, several useful lifetime prediction for rail-pads were proposed.

A study on the optimal design of automobile suspension system (자동차 懸架裝置의 최적설계에 관한 연구)

  • Kim, Ho-Ryong;Choi, Sub
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.3
    • /
    • pp.437-443
    • /
    • 1987
  • An optimal design to improve the ride quality was performed with the time and frequency domain analysis based on both of deterministic and random road profiles. The objective function is established to minimize the absorbed power while the constraints are taken so as to satisfy the condition for the stability of vehicle. The result of the optimal design shows that the rms for the acceleration of a driver and his seat is within the critical values for the ride quality from ISO. The optimal values obtained show that the maximum absolute acceleration of the driver and his seat has significantly been reduced and the reference limits on the relative displacement have satisfied their feasibility. As the optimal value according to a specific speed is the results from the optimization process, a global optimum value should be determined to be the one which gives th minimum values of total sum of absorbed power with respect to various speed.