• Title/Summary/Keyword: absolute strength

Search Result 158, Processing Time 0.024 seconds

A Study on the Minimum Tooth Number of Profile Shifted Elliptical Gears to Avoid Undercutting (언더컷을 고려한 전위 타원계엽형기어의 최소잇수에 관한 연구)

  • 최상훈;이두영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.572-577
    • /
    • 1997
  • This present paper describes a mathematical model of profile elliptical gears, and this model is based on the concepts of envelop theory and conjugate geometry between the blank and the straight-sided rack cutter. The geometric model of the rack cutter includes working regions generating involute curves andd fillets for trocoidal curves, and furthermore the addendum modified coeff,is considered for avoiding undercutting. The addendum modified coeff, is changed linearly along with pitch curves and must be the must be the same absolute value at both major semi-axis and minor semi-axis. If undercutting is at all pronounced, the undercut tooth not only are weakened in strength, but lose a small portion of the involute adjacent to the base circle, then this loss of involute may ncause a serios reduction in the length of contact. A very effective method of avoiding undercutting is to use the so-called profile shifted gearing. Non-undercutting conditon is examined with the change of eccentricity and addendum modefied coeff. in elliptical gears and then the minimum number of tooth is proposed not to gernerate undercutting phenomenon.

  • PDF

Impact of time and frequency domain ground motion modification on the response of a SDOF system

  • Carlson, Clinton P.;Zekkos, Dimitrios;McCormick, Jason P.
    • Earthquakes and Structures
    • /
    • v.7 no.6
    • /
    • pp.1283-1301
    • /
    • 2014
  • Ground motion modification is extensively used in seismic design of civil infrastructure, especially where few or no recorded ground motions representative of the design scenario are available. A site in Los Angeles, California is used as a study site and 28 ground motions consistent with the design earthquake scenario are selected. The suite of 28 ground motions is scaled and modified in the time domain (TD) and frequency domain (FD) before being used as input to a bilinear SDOF system. The median structural responses to the suites of scaled, TD-modified, and FD-modified motions, along with ratios of he modified-to-scaled responses, are investigated for SDOF systems with different periods, strength ratios, and post-yield stiffness ratios. Overall, little difference (less than 20%) is observed in the peak structural accelerations, velocities, and displacements; displacement ductility; and absolute accelerations caused by the TD-modified and FD-modified motions when compared to the responses caused by the scaled motions. The energy absorbed by the system when the modified motions are used as input is more than 20% greater than when scaled motions are used as input. The observed trends in the structural response are predominantly the result of changes in the ground motion characteristics caused by modification.

A Plan to Ensure Safety of Electrical Installation in Empty Houses by Measuring Zero Phase Current (영상전류 측정을 이용한 부재수용가의 전기설비에 대한 안전확보 방안)

  • Lim, Young-Bae;Bae, Seok-Myung;Kim, Young-Seok;Park, Chee-Huyn;Kim, Gi-Hyun;Cho, Sung-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.55 no.4
    • /
    • pp.196-201
    • /
    • 2006
  • A electrical fault that may generate an electrical disaster is defined as any abnormal condition caused by reduction in the insulation strength. To find out the abnormal condition, periodical inspections have being performed every 3 years. Recently, the number of empty houses during normal working hours is rising by dramatic increase in the number of nuclear families and double income families. To define the potential risk of the electric installation, measurement of zero phase current has been being considered. But the measured value could not be adapted to an absolute reference to the installation because the measured zero phase current value also contained capacitive leakage current. Therefore, in this paper, the correlation between the condition of the electrical installation and the zero phase current was analyzed. The result focuses on to detect them in a cost efficient way.

Optimum seismic design of unbonded post-tensioned precast concrete walls using ANN

  • Abdalla, Jamal A.;Saqan, Elias I.;Hawileh, Rami A.
    • Computers and Concrete
    • /
    • v.13 no.4
    • /
    • pp.547-567
    • /
    • 2014
  • Precast Seismic Structural Systems (PRESSS) provided an iterative procedure for obtaining optimum design of unbonded post-tensioned coupled precast concrete wall systems. Although PRESSS procedure is effective, however, it is lengthy and laborious. The purpose of this research is to employ Artificial Neural Network (ANN) to predict the optimum design parameters for such wall systems while avoiding the demanding iterative process. The developed ANN model is very accurate in predicting the nondimensional optimum design parameters related to post-tensioning reinforcement area, yield force of shear connectors and ratio of moment resisted by shear connectors to the design moment. The Mean Absolute Percent Error (MAPE) for the test data for these design parameters is around %1 and the correlation coefficient is almost equal to 1.0. The developed ANN model is then used to study the effect of different design parameters on wall behavior. It is observed that the design moment and the concrete strength have the most influence on the wall behavior as compared to other parameters. Several design examples were presented to demonstrate the accuracy and effectiveness of the ANN model.

A Plan to Ensure Safety of Electric Installation in Empty houses During Normal Working Hours (부재수용가의 전기설비에 대한 안전확보 방안)

  • Lim, Young-Bae;Jung, Jong-Wook;Jung, In-Soo;Bae, Seok-Myung;Cho, Sung-Won
    • Proceedings of the KIEE Conference
    • /
    • 2006.07e
    • /
    • pp.25-26
    • /
    • 2006
  • An electrical fault is defined as any abnormal condition caused by reduction in the insulation strength between energized conduction parts and ground or any grounded part of an electrical system. Failure of solid insulation can be caused by excessive mechanical tension being applied on the insulation, harsh service environment, aging, and also by corona phenomena. The number of empty houses during normal working hours is rising. As a result, the number of uninspected electric installation for general use is increasing. To define the potential risk of the electric installation, measurement of leakage current has been getting considered, but because the measured leakage current value also contained leakage current by capacitance, the measured value can not be adapted to absolute reference to the installation. Therefore, in this paper, the correlation between the condition of electric installation and leakage current were analyzed.

  • PDF

The Study on the Physicochemical Properties of Fluid under High Pressure (1). Effects of Pressure and Temperature on the Pentamethyl Benzene-Iodine Charge Transfer Complex in n-HexaneⅠ

  • Kim, Jeong-Rim;Kwun, Oh-Cheun
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.2
    • /
    • pp.74-79
    • /
    • 1985
  • The stabilities of the charge transfer complexes of pentamethyl benzene with iodine in n-hexane have been investigated by UV-spectrophotometric measurements at 25, 40 and 60$^{\circ}C$ up to 1600 bars. The equilibrium constant of the complex formation was increased with pressure while being decreased with temperature raising. Changes of volume, enthalpy, free energy and entropy for the formation of the complexes were obtained from the equilibrium constants. The red-shift at higher pressure, the blue-shift at higher temperature, and the relation between pressure and oscillator strength have been discussed by means of thermodynamic functions. In comparison with the results in the previous studies, the absolute values of ${\Delta}$V at each temperature were increased with the number of methyl groups of polymethyl benzene. However, it can be seen that both ${\Delta}$H and ${\Delta}$S show extreme behaviors in durene near atmospheric pressure but they are negatively increased with the number of methyl groups near 1600 bar. This order of the thermodynamic parameters may be a measure of the relative basicities of polymethyl benzenes toward iodine under each pressure, and these phenomena are explained in terms of a positive inductive effect and a steric hindrance effect of the polymethyl benzene molecule.

Comparison and optimization of deep learning-based radiosensitivity prediction models using gene expression profiling in National Cancer Institute-60 cancer cell line

  • Kim, Euidam;Chung, Yoonsun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.3027-3033
    • /
    • 2022
  • Background: In this study, various types of deep-learning models for predicting in vitro radiosensitivity from gene-expression profiling were compared. Methods: The clonogenic surviving fractions at 2 Gy from previous publications and microarray gene-expression data from the National Cancer Institute-60 cell lines were used to measure the radiosensitivity. Seven different prediction models including three distinct multi-layered perceptrons (MLP), four different convolutional neural networks (CNN) were compared. Folded cross-validation was applied to train and evaluate model performance. The criteria for correct prediction were absolute error < 0.02 or relative error < 10%. The models were compared in terms of prediction accuracy, training time per epoch, training fluctuations, and required calculation resources. Results: The strength of MLP-based models was their fast initial convergence and short training time per epoch. They represented significantly different prediction accuracy depending on the model configuration. The CNN-based models showed relatively high prediction accuracy, low training fluctuations, and a relatively small increase in the memory requirement as the model deepens. Conclusion: Our findings suggest that a CNN-based model with moderate depth would be appropriate when the prediction accuracy is important, and a shallow MLP-based model can be recommended when either the training resources or time are limited.

Axial capacity of FRP reinforced concrete columns: Empirical, neural and tree based methods

  • Saha Dauji
    • Structural Engineering and Mechanics
    • /
    • v.89 no.3
    • /
    • pp.283-300
    • /
    • 2024
  • Machine learning (ML) models based on artificial neural network (ANN) and decision tree (DT) were developed for estimation of axial capacity of concrete columns reinforced with fiber reinforced polymer (FRP) bars. Between the design codes, the Canadian code provides better formulation compared to the Australian or American code. For empirical models based on elastic modulus of FRP, Hadhood et al. (2017) model performed best. Whereas for empirical models based on tensile strength of FRP, as well as all empirical models, Raza et al. (2021) was adjudged superior. However, compared to the empirical models, all ML models exhibited superior performance according to all five performance metrics considered. The performance of ANN and DT models were comparable in general. Under the present setup, inclusion of the transverse reinforcement information did not improve the accuracy of estimation with either ANN or DT. With selective use of inputs, and a much simpler ANN architecture (4-3-1) compared to that reported in literature (Raza et al. 2020: 6-11-11-1), marginal improvement in correlation could be achieved. The metrics for the best model from the study was a correlation of 0.94, absolute errors between 420 kN to 530 kN, and the range being 0.39 to 0.51 for relative errors. Though much superior performance could be obtained using ANN/DT models over empirical models, further work towards improving accuracy of the estimation is indicated before design of FRP reinforced concrete columns using ML may be considered for design codes.

Analysis of acoustic emission parameters according to failure of rock specimens (암석시편 파괴에 따른 acoustic emission 특성인자 분석)

  • Lee, Jong-Won;Oh, Tae-Min;Kim, Hyunwoo;Kim, Min-Jun;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.5
    • /
    • pp.657-673
    • /
    • 2019
  • A monitoring method based on acoustic emission (AE) sensor has been widely used to evaluate the damage of structures in underground rock. The acoustic emission signal generated from cracking in material is analyzed as various acoustic emission parameters in time and frequency domain. To investigate from initial crack generation to final failure of rock material, it is important to understand the characteristics of acoustic emission parameters according to the stress ratio and rock strength. In this study, uniaxial compression tests were performed using very strong and weak rock specimen in order to investigate the acoustic emission parameters when the failure of specimen occurred. In the results of experimental tests, the event, root-mean-square (RMS) voltage, amplitude, and absolute energy of very strong rock specimen were larger than those of the weak rock specimen with an increase of stress ratio. In addition, the acoustic emission parameters related in frequency were more affected by specification (e.g., operation and resonant frequency) of sensors than the stress ratio or rock strength. It is expected that this study may be meaningful for evaluating the damage of underground rock when the health monitoring based on the acoustic emission technique will be performed.

A Study on the Changing Functions of the PRC Marine Corps and Future Development (중국 해병대의 기능변화와 향후 발전전망 연구)

  • Lee, Pyo-Kyu;Lim, Gye-Hwan
    • Convergence Security Journal
    • /
    • v.17 no.5
    • /
    • pp.143-151
    • /
    • 2017
  • The purpose of this study is to provide the future development of the PRC Marine Corps by analyzing the changing functions via its historical development. The PRCMC is an elite regular military forces and was established by the Central Military Commission(China) in 1953 in order to project the national military power toward the enemy's territory by overcoming maritime obstacles such as seas and lakes. The PRCMC is relatively smaller personnel strength compared with the whole size of the PRC military forces. Thus its functions were limited in the areas of amphibious and land operations, island and land defense against Taiwan before the PRC pursues expanding policy toward outside. However, in the 2000s, China pursues its policy for obtaining absolute national interest so that its functions are rapidly enlarged into defense of the forward naval bases, and those for evolving its power toward outside according to not only the island territorial dispute with Japan, but also Xi Jinping's active expanding policy what we call 'the one belt and one road'. So its personnel strength is slowly increased. If the increasement of the PRC Navy and Marine Corps would develop into the level of which they can contain the status and influence of the US military power in Asia-Pacific area, it is possible that the security environment of the North-east Asia including the Korean peninsula will be fluctuated. Consequently, the ROK also needs to reevaluate the functions and the size of the joint strength of the ROK Navy and Marine Corps considering the transition of the changing security environment.