• 제목/요약/키워드: absolute bioavailability

검색결과 70건 처리시간 0.028초

Effects of Glipizide on the Pharmacokinetics of Carvedilol after Oral and Intravenous Administration in Rats

  • Lee, Chong-Ki;Choi, Jun-Shik
    • Biomolecules & Therapeutics
    • /
    • 제19권2호
    • /
    • pp.237-242
    • /
    • 2011
  • This study was designed to investigate the effects of glipizide on the pharmacokinetics of carvedilol after oral or intravenous administration of carvedilol in rats. Clinically carvedilol and glipizide can be prescribed for treatment of cardiovascular diseases as the complications of diabetes, and then, Carvedilol and glipizide are all substrates of CYP2C9 enzymes. Carvedilol was administered orally or intravenously without or with oral administration of glipizide to rats. The effects of glipizide on cytochrome P450(CYP) 2C9 activity and P-gp activity were also evaluated. Glipizide inhibited CYP2C9 activity in a concentration-dependent manner with 50% inhibition concentration ($IC_{50}$) of 18 ${\mu}M$. Compared with the control group, the area under the plasma concentration-time curve (AUC) was significantly increased by 33.0%, and the peak concentration ($C_{max}$) was significantly increased by 50.0% in the presence of glipizide after oral administration of carvedilol. Consequently, the relative bioavailability (R.B.) of carvedilol was increased by 1.13- to 1.33-fold and the absolute bioavailability (A.B.) of carvedilol in the presence of glipizide was increased by 36.8%. After intravenous administration, compared to the control, glipizide could not significantly change the pharmacokinetic parameters of carvedilol. Therefore, the enhanced oral bioavailability of carvedilol may mainly result from inhibition of CYP2C9-mediated metabolism rather than both P-gp-mediated effl ux in the intestinal or in the liver and renal elimination of carvedilol by glipizide.

Development of Sensitive Analytical Method of Rhodanthpyrone A by a LC-MS/MS and its Application to Bioavailability Study in Rats

  • Kang, Bitna;Yoon, Jeong A;Song, Im-Sook;Han, Young Taek;Choi, Min-Koo
    • Mass Spectrometry Letters
    • /
    • 제10권3호
    • /
    • pp.88-92
    • /
    • 2019
  • A sensitive analytical method of rhodanthpyrone A in rat plasma was developed using a liquid chromatography-tandem mass spectrometry (LC-MS/MS). Rhodanthpyrone A and rhodanthpyrone B (internal standard) in rat plasma were extracted by a liquid-liquid extraction method with ethyl acetate. This extraction method gave results in high and reproducible extraction recovery in the range of 73.75-79.90% with no interfering peaks around the peak elution time of rhodanthpyrone A and B. The standard calibration curves for rhodanthpyrone A ranged from 0.5 to 2000 ng/mL were linear with $r^2$ > 0.994 and the inter- and intra-day accuracy and precision and the stability were within acceptance criteria. Using this validated analytical method, pharmacokinetics of rhodanthpyrone A following intravenous and oral administration of rhodanthpyrone A at doses of 2 mg/kg and 30 mg/kg, respectively, were investigated. Rhodanthpyrone A in rat plasma showed multi-exponential elimination pattern with high clearance and volume of distribution values. The absolute oral bioavailability of this compound was calculated as 3.7%. Collectively, the newly developed sensitive LC-MS/MS analytical method of rhodanthpyrone A could be successfully applied to investigate the pharmacokinetic properties of this compound and would be useful for the further studies on the efficacy, toxicity, and biopharmaceutics of rhodanthpyrone A.

흰쥐에서의 신규 항암제 BR-28702-2의 체내동태 (Pharmacokinetic Study on BR-28702-2, a New Anticancer Drug, in Rats)

  • 용철순;이신웅;전철수;채희상;신원섭;백우현
    • Biomolecules & Therapeutics
    • /
    • 제3권2호
    • /
    • pp.97-103
    • /
    • 1995
  • The purpose of this study was to determine pharmacokinetic parameters of BR-28702-2, a new antineoplastic agent which is the conjugate of nucleotide and phospholipid, and to compare them with those of ara-C. Male rats were cannulated in the left femoral vein and received a single i.v. bolus dose of either BR-28702-2 or ara-C. BR-28702-2 was also administered i.p. and plasma samples were analyzed by reversedphase HPLC. The t$_{1}$2($\beta$)/ of ara-C(1.22 hr.) was significantly smaller than that of BR-28702-2(4.420 hr.). The absolute bioavailability of BR-28702-2 after i.p. injection was 1.125%. This lower bioavailability, together with previous reports that marked antineoplastic activity was observed when given i.p., indicates that BR-28702-2 would act as a depot system to release active moieties. Further works, therefore, need to be done to characterize active metabolites.

  • PDF

Effects of Atorvastatin on the Pharmacokinetics of Nicardipine after Oral and Intravenous Administration in Rats

  • Choi, Jun-Shik;Ha, Sung-Il;Choi, Dong-Hyun
    • Biomolecules & Therapeutics
    • /
    • 제18권2호
    • /
    • pp.226-232
    • /
    • 2010
  • The aim of this study was to investigate the effect of atrovasatatin on the pharmacokinetics of nicardipine after oral and intravenous administration of nicardipine to rats. Nicardipine was administered orally (12 mg/kg) or intravenously (i.v., 4 mg/kg) without or with oral administration of atrovasatatin (0.3 or 1.0 mg/kg) to rats. The effect of atorvastatin on the P-glycoprotein (P-gp) as well as CYP3A4 activity was also evaluated. Atorvastatin inhibited CYP3A4 enzyme activity in a concentration-dependent manner with 50% inhibition concentration ($IC_{50}$) of 48 ${\mu}M$. Compared to the controls (nicardipine alone), the area under the plasma concentration-time curve (AUC) of nicardipine was significantly (1.0 mg/kg, p<0.05) greater by 16.8-45.4%, and the peak plasma concentration ($C_{max}$) was significantly (1.0 mg/kg, p<0.05) higher by 28.0% after oral administration of nicardipine with atorvastatin, respectively. Consequently, the relative bioavailability (R.B.) of nicardipine was increased by 1.17- to 1.45-fold and the absolute bioavailability (A.B.) of nicardipine with atrovasatatin was significantly greater by 16.7-20.9% compared to that of the controls (14.3%). Compared to the i.v. control, atrovasatatin did not significantly change pharmacokinetic parameters of i.v. administration nicardipine. The enhanced oral bioavailability of nicardipine by atorvastatin suggests that CYP3A subfamily-mediated metabolism were inhibited in the intestine and/or in the liver rather than P-gp-mediated efflux of nicardipine. Based on these results, modification of nicardipine of dosage regimen is required in the patients. Human studies are required to prove the above hypothesis.

Pharmacokinetic Drug Interaction between Carvedilol and Ticlopidine in Rats

  • Choi, Jun-Shik;Choi, Dong-Hyun
    • Biomolecules & Therapeutics
    • /
    • 제18권3호
    • /
    • pp.343-349
    • /
    • 2010
  • This study was designed to investigate the effects of ticlopidine on the pharmacokinetics of carvedilol after oral or intravenous administration of carvedilol in rats. Carvedilol was administered orally (3 mg/kg) or intravenously (1 mg/kg) without or with oral administration of ticlopidine (4, 12 mg/kg) to rats. The effects of ticlopidine on P-glycoprotein (P-gp) and cytochrome P450 (CYP) 2C9 activity were also evaluated. Ticlopidine inhibited CYP2C9 activity in a concentration-dependent manner with 50% inhibition concentration ($IC_{50}$) of $25.2\;{\mu}M$. In addition, ticlopidine could not significantly enhance the cellular accumulation of rhodamine 123 in MCF-7/ADR cells overexpressing P-gp. Compared with the control group (given carvedilol alone), the area under the plasma concentration-time curve (AUC) was significantly (12 mg/kg, p<0.05) increased by 14-41%, and the peak concentration ($C_{max}$) was significantly (12 mg/kg, p<0.05) increased by 10.7-73.3% in the presence of ticlopidine after oral administration of carvedilol. Consequently, the relative bioavailability (R.B.) of carvedilol was increased by 1.14- to 1.41-fold and the absolute bioavailability (A.B.) of carvedilol in the presence of ticlopidine was increased by 36.2-38.5%. Compared to the i.v. control, ticlopidine could not significantly change the pharmacokinetic parameters of i.v. administered carvedilol. The enhanced oral bioavailability of carvedilol may result from inhibition of CYP2C9-mediated metabolism rather than P-gpmediated efflux of carvedilol in the intestinal and/or in liver and renal eliminatin of carvedilol by ticlopidine.

랫트에 있어서 시프로플록사신의 흡수와 생체이용율에 미치는 돔페리돈, 스코폴라민부틸브로마이드 및 시메티딘의 영향 (Effects of Domperidone, Scopolamine Butylbromide and Cimetidine on Absorption and Bioavailability of Ciprofloxacin in Rats)

  • 임혜숙;박기배;이도익;이광표
    • Journal of Pharmaceutical Investigation
    • /
    • 제22권2호
    • /
    • pp.125-131
    • /
    • 1992
  • The effects of domperidone, scopolamine butylbromide and cimetidine on the absorption and bioavailability of ciprofloxacin were studied in female rats. Ciprofloxacin was given in a single oral dose of 30 mg/kg to control group. Ciprofloxacin was concurrently administered with domperidone $(T_1\;group)$, scopolamine butylbromide $(T_2\;group)$, and cimetidine $(T_3\;group)$ to rats, respectively. Significantly changed pharmacokinetic parameters observed in $T_2$group when compared with control group were first-order absorption rate constant, $Ka(4.43{\pm}0.85$\;versus\;2.86{\pm}0.41\;hr^{-1},\;p<0.05)$, time needed to reach peak concentration, $T_{max}\;(32.27{\pm}2.46\;versus\;51.75{\pm}5.51\;min,\;p<0.05)$, area under the plasma concentration-time curve, AUC $(332{\pm}19\;versus\;477{\pm}27\;{\mu}g{\cdot}min/ml,\;p<0.05)$ and absolute bioavailability, Fabs $(60.6{\pm}3.6\;versus\;87.0{\pm}5.0%,\;p<0.05)$. On the other hand, domperidone and cimetidine did not significantly affect the absorption of ciprofloxacin. It is suggested that when scopolamine butylbromide is selected for clinical use, there is need for awareness of the reduction in absorption rate and the enhancement in absorption extent of ciprofloxacin.

  • PDF

Pharmacokinetic Interaction between Warfarin and Efonidipine in Rats

  • Choi, Dong-Hyun;Choi, Jun-Shik
    • Journal of Pharmaceutical Investigation
    • /
    • 제41권5호
    • /
    • pp.273-278
    • /
    • 2011
  • The aim of this study was to investigate the effect of efonidipine on the pharmacokinetics of warfarin after oral and intravenous administration of warfarin in rats. Warfarin was administered orally (0.2 mg/kg) or intravenously (0.05 mg/kg) without or with oral administration of efonidipine (1 or 3 mg/kg) in rats. The effect of efonidipine on the cytochrome P450 (CYP) 3A4 activity was also evaluated. Efonidipine inhibited CYP3A4 enzyme activity with 50% inhibition concentration ($IC_{50}$) of $0.08{\mu}M$. Compared to those in the oral control group (warfarin without efonidipine), the area under the plasma concentration-time curve (AUC) of warfarin was significantly greater (1 mg/kg, P<0.05; 3 mg/kg, P<0.01) by 25.9-59.0%, and the peak plasma concentration ($C_{max}$) was significantly higher (3 mg/kg, P<0.05) by 26.2% after oral administration of warfarin with efonidipine, respectively. The total body clearance of warfarin was significantly (3 mg/kg, P<0.05) decreased by efonidifine. Consequently, the relative bioavailability of warfarin was increased by 1.26- to 1.59-fold and the absolute bioavailability of warfarin with efonidipine was significantly greater by 59.7-75.4 % compared to that in the control group (47.4%). In contrast, efonidipine had no effect on any pharmacokinetic parameters of warfarin given intravenously. Therefore, the enhanced oral bioavailability of warfarin may be due to inhibition of CYP 3A4-mediated metabolism in the intestine and/or liver and to reduction of total body celarance rather than renal elimination, resulting in reducing first-pass metabolism by efonidipine.

흰쥐에서 글리피지드가 로살탄의 약물동태에 미치는 영향 (Effects of Glipizide on the Pharmacokinetics of Losartan after Oral and Intravenous Administration in Rats)

  • 유진욱;최진석;최준식
    • 약학회지
    • /
    • 제55권3호
    • /
    • pp.240-246
    • /
    • 2011
  • The present study was to investigate the effect of glipizide on the pharmacokinetics of losartan in rats. Losartan was administered intravenously (3 mg/kg) and orally (9 mg/kg) in the presence and absence of glipizide (0.3 and 1 mg/kg) to rats. The pharmacokinetic parameters of losartan were significantly altered by the presence of glipizide compared with the control group (given losartan alone). Presence of glipizide significantly (p<0.05, 0.3 mg/kg) increased the area under the plasma concentration-time curve (AUC) of losartan by 48.2% and peak plasma concentration ($C_{max}$) of losartan by 47.4%. Consequently, the absolute bioavailability (AB%) of losartan in the presence of glipizide was 38%, which was enhanced significantly (p<0.05) compared to that in the oral control group (25%). The relative bioavailability (RB%) of losartan increased by 1.18- to 1.48-fold in the presence of glipizide. However, there was no significant change in the peak plasma concentration ($T_{max}$) and terminal half-life ($T_{1/2}$) of losartan in the presence of glipizide. In contrast, glipizide did not affect the pharmacokinetics of intravenous losartan. In conclusion, the presence of glipizide significantly enhanced the oral bioavailability of losartan, implying that glipizide might be mainly to inhibit the cytochrome P450 (CYP) 2C9-mediated metabolism, resulting in reducing gastrointestinal and/or hepatic first-pass metabilism of losartan rather than in reducing P-glycoprotein-mediated efflux and renal elimination of losartan. Concurrent use of glipizide with losartan should require close monitoring for potential drug interactions.

HPLC Determination and Steady-State Bioavailability Study of Levodropropizine Sustained-release Tablets in Dogs

  • Yan, Lin;Li, Tongling;Zhang, Rongqin;Xu, Xiaohong;Zheng, Pengcheng
    • Archives of Pharmacal Research
    • /
    • 제29권6호
    • /
    • pp.514-519
    • /
    • 2006
  • A simple HPLC method using UV detection was developed and validated for the determination of levodropropizine (LDP) In dog plasma. The sample was prepared for injection using a liquid-liquid extraction method with 1-phenypiperazine as the internal standard. The mobile phase was methanol - diethylamine solution (0.05 M) (20:80, v/v, pH adjusted to 3.0 with $H_3PO_4$) with a detection wavelength of 240 nm. The limit of quantitation (LOQ) of LDP in a biological matrix was determined to be 25.25 ng/mL. The calibration curve was linear across the concentration range of 25.25 to 2020 ng/mL. The intra-day and inter-day precision values (CV%) were within 7% and accuracy (R.E. %) was within 6% of the nominal values for medium (252.5 ng/mL) and high (2020 ng/mL) LDP concentrations. For the LDP concentration at the LOQ, the intra-day and inter-day precision and accuracy were within 20% and 10%, respectively. The average absolute recovery for LDP was 70.28%. This method was successfully used to analyze plasma samples in a steady-state bioavailability study of a newly developed sustained-release LDP tablets (SR) using immediate-release tablets (IR) as the reference. The relative bioavailability of the SR was determined to be $106.3\;{\pm}\;12.8%$ (n=6). The $C_{max}$ of the SR was significantly lower (p<0.05), and the $t_{max}$ was significantly longer than that of the IR (p<0.05). The results of ANOVA and two one-sided tests indicated that the SR exhibited acceptable sustained release properties and was bioequivalent to the IR.

Pharmacokinetic Interaction between Nisoldipine and Repaglinide in Rats

  • Choi, In;Choi, Dong-Hyun;Yeum, Cheul-Ho;Choi, Jun-Shik
    • Biomolecules & Therapeutics
    • /
    • 제19권4호
    • /
    • pp.498-503
    • /
    • 2011
  • The purpose of this study was to investigate the effects of nisoldipine on the pharmacokinetics of repaglinide in rats. The effect of nisoldipine on cytochrome P450 (CYP) 3A4 activity and P-glycoprotein (P-gp) were evaluated. The pharmacokinetic parameters of repaglinide were also determined in rats after oral (0.5 $mg{\cdot}kg^{-1}$) and intravenous (0.2 $mg{\cdot}kg^{-1}$) administration of repaglinide to rats without or with nisoldipine (0.3 and 1.0 $mg{\cdot}kg^{-1}$). Nisoldipine inhibited CYP3A4 enzyme activity with a 50% inhibition concentration of 5.5 ${\mu}M$. In addition, nisoldipine significantly enhanced the cellular accumulation of rhodamine-123 in MCF-7/ADR cells overexpressing P-gp. Compared to the oral control group, nisoldipine significantly increased the $AUC_{0-{\infty}}$ and the $C_{max}$ of repaglinide by 46.9% and 24.9%, respectively. Nisoldipine also increased the absolute bioavailability (A.B.) of repaglinide by 47.0% compared to the oral control group. Moreover, the relative bioavailability (R.B.) of repaglinide was 1.16- to 1.47-fold greater than that of the control group. Nisoldipine enhanced the oral bioavailability of repaglinide, which may be attributable to the inhibition of the CYP3A4-mediated metabolism in the small intestine and/or in the liver and to inhibition of P-gp in the small intestine rather than to reduction of renal elimination of repaglinide by nisoldipine. The increase in the oral bioavailability of repaglinide should be taken into consideration of potential drug interactions when co-administering repaglinide and nisoldipine.