Browse > Article
http://dx.doi.org/10.4062/biomolther.2011.19.2.237

Effects of Glipizide on the Pharmacokinetics of Carvedilol after Oral and Intravenous Administration in Rats  

Lee, Chong-Ki (Department of Medical Management, Chodang University)
Choi, Jun-Shik (College of Pharmacy, Chosun University)
Publication Information
Biomolecules & Therapeutics / v.19, no.2, 2011 , pp. 237-242 More about this Journal
Abstract
This study was designed to investigate the effects of glipizide on the pharmacokinetics of carvedilol after oral or intravenous administration of carvedilol in rats. Clinically carvedilol and glipizide can be prescribed for treatment of cardiovascular diseases as the complications of diabetes, and then, Carvedilol and glipizide are all substrates of CYP2C9 enzymes. Carvedilol was administered orally or intravenously without or with oral administration of glipizide to rats. The effects of glipizide on cytochrome P450(CYP) 2C9 activity and P-gp activity were also evaluated. Glipizide inhibited CYP2C9 activity in a concentration-dependent manner with 50% inhibition concentration ($IC_{50}$) of 18 ${\mu}M$. Compared with the control group, the area under the plasma concentration-time curve (AUC) was significantly increased by 33.0%, and the peak concentration ($C_{max}$) was significantly increased by 50.0% in the presence of glipizide after oral administration of carvedilol. Consequently, the relative bioavailability (R.B.) of carvedilol was increased by 1.13- to 1.33-fold and the absolute bioavailability (A.B.) of carvedilol in the presence of glipizide was increased by 36.8%. After intravenous administration, compared to the control, glipizide could not significantly change the pharmacokinetic parameters of carvedilol. Therefore, the enhanced oral bioavailability of carvedilol may mainly result from inhibition of CYP2C9-mediated metabolism rather than both P-gp-mediated effl ux in the intestinal or in the liver and renal elimination of carvedilol by glipizide.
Keywords
Carvedilol; Glipizide; CYP2C9; P-gp; Pharmacokinetics; Rats;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Kaminsky, L. S. and Fasco, M. J. (1991) Small intestinal cytochromes P450. Crit. Rev. Toxicol. 21, 407-422.
2 Kivisto, K. T. and Neuvonen, P. J. (1991) Enhancement of absortion and effect of glipizide by magnesium hydroxide. Clin. Pharmacol. Ther. 49, 39-43.   DOI
3 Kolars, J. C., Schmiedlin-Ren, P., Schuetz, J. D., Fang, C. and Watkins, P. B. (1992) Identifi cation of rifampin-inducible P450IIIA4 (CYP2C9) in human small bowel enterocytes. J. Clin. Invest. 90, 1871-1878.   DOI
4 Kradjan, W. A., Takeuchi, K. Y., Opheim, K. E. and Wood, F. C. Jr. (1995) Pharmacokinetics and pharmacodynamics of glipizide after once-daily and divided doses. Pharmacotherapy 15, 465-471.
5 Arauz-Pacheco, C., Ramirez, L. C., Rios, J. M. and Raskin, P. (1990) Hypoglycemia induced by angiotensin-converting enzyme inhibitors in patients with non-insulin dependent diabetes recieving sulfonylurea therapy. Am. J. Med. 89, 811-813.   DOI
6 Bart, J., Dijkers, E. C. Wegman, T. D., de Vries, E. G., van der Graaf, W. T., Groen, H. J., Vaalburg, W., Willemsen, A. T. and Hendrikse, N. H. (2005) New positron emission tomography tracer [(11)C] carvedilol reveals P-glycoprotein modulation kinetics. Br. J. Pharmacol. 145, 1045-1051   DOI
7 Bristow, M. R., Gilbert, E. M., Abraham, W. T., Adams, K. F., Fowler, M. B., Hershberger, R. E., Kubo, S. H., Narahara, K. A., Ingersoll, H., Krueger, S., Young, S. and Shusterman, N. (1996) Carvedilol produces dose-related improvements in left ventricular function and survival in subjects with chronic heart failure. MOCHA Investigators. Circulation. 94, 2807-2816.   DOI   ScienceOn
8 Bristow, M. R., Larrabee, P., Minobe, W., Roden, R., Skerl, L., Klein, J., Handwerger, D., Port, J. D. and Müller-Beckmann, B. (1992) Receptor pharmacology of carvedilol in the human heart. J. Cardiovasc. Pharmacol. 19, S68-80.   DOI
9 Wahlin-Boll, E., Almer, L. O. and Melander, A. (1982) Bioavailability, pharmacokinetics and effects of glipizide in type 2 diabetics. Clin. Pharmacokinet. 7, 363-372.   DOI
10 Zarghi, A., Foroutan, S. M., Shafaati, A. and Khoddam, A. (2007) Quantifi cation of carvedilol in human plasma by liquid chromatography using fl uorescence detection: application in pharmacokinetic studies. J. Pharm. Biomed. Anal. 44, 250-253.   DOI
11 Connacher, A. A., el Debani, A. H., Isles, T. E. and Stevenson, I. H. (1987) Disposition and hypoglycaemic action of glipizide in diabetic patients given a single dose of nifedipine. Eur. J. Clin. Pharmacol. 33, 81-83.   DOI
12 Cao, X., Gibbs, S. T., Fang, L., Miller, H. A., Landowski, C. P., Shin, H. C., Lennernas, H., Zhong, Y., Amidon, G. L., Yu, L. X. and Sun, D. (2006) Why is it challenging to predict intestinal drug absorption and oral bioavailability in human using rat model. Pharm. Res. 23, 1675-1686.   DOI
13 Choi, J. S. and Choi, D. H. (2010) Pharmacokinetic drug interaction between carvedilol and ticlopidine in rats. Bio. Ther. 18, 343-349.   과학기술학회마을   DOI
14 Cleland, J. G., Bristow, M. R., Erdmann, E., Remme, W. J., Swedberg, K. and Waagstein, F. (1996) Beta-blocking agents in heart failure. Should they be used and how? Eur. Heart J. 17, 1629-1639.   DOI   ScienceOn
15 McTavish, D., Campoli-Richards, D. and Sorkin, E. M. (1993) Carvedilol. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic effi cacy. Drugs 45, 232-258.
16 Kradjan, W. A., Witt, D. M., Opheim, K. E. and Wood, F. C. Jr. (1994) Lack of interaction between glipizide and co-trimoxazole. J. Clin. Pharmacol. 34, 997-1002.   DOI   ScienceOn
17 Lewis, D. F. V. (1996) Cytochrome P450. Substrate specifi city and metabolism. In Cytochromes P450. Structure, Function, and Mechanism. pp. 122-123. Taylor & Francis, Bristol.
18 Lund-Johansen, P., Omvik, P., Nordrehaug, J. E. and White, W. (1992) Carvedilol in hypertension: effects on hemodynamics and 24-hour blood pressure. J. Cardiovasc. Pharmacol. 19, S27-34.   DOI
19 Morgan, T. (1994) Clinical pharmacokinetics and pharmacodynamics of carvedilol. Clin. Pharmacokinet. 26, 335-346.   DOI
20 Neugebauer, G., Akpan, W., von Mollendorff, E., Neubert, P. and Reiff, K. (1987) Pharmacokinetics and disposition of carvedilol in humans. J. Cardiovasc. Pharmacol. 11, S85-88.
21 Neugebauer, G. and Neubert, P. (1991) Metabolism of carvedilol in man. Eur. J. Drug Metab. Pharmacokinet. 16, 257-260.   DOI
22 Cournot, A., Lim, C., Duchier, J. and Safar, M. (1992) Hemodynamic effects of carvedilol after acute oral administration in hypertensive and normal subjects. J. Cardiovasc. Pharmacol. 19, S35-39.
23 Niemi, M., Backman, J. T., Neuvonen, P. J. and Kivisro, K. T. (2001) Effects of rifampin on the pharmacokinetics and pharmacodynamics of glyburide and glipizide. Clin. Pharmacol. Ther. 69, 400-406.   DOI
24 Oldham, H. G. and Clarke, S. E. (1997) In vitro identifi cation of the human cytochrome P450 enzymes involved in the metabolism of R(+)- and S(-)-carvedilol. Drug Metab. Dispos. 25, 970-977.
25 Paice, B. J., Paterson, K. R., and Lawson, D. H. (1985) Undesired effects of the sulphonylurea drugs. Adverse Drug React Acute Poisoning Rev. 4, 23-36.
26 Crespi, C. L., Miller, V. P. and Penman, B. W. (1997) Microtiter plate assays for inhibition of human, drug-metabolizing cytochromes P450. Anal. Biochem. 248, 188-190.   DOI
27 DasGupta, P., Broadhurst, P. and Lahiri, A. (1991)The effects of intravenous carvedilol, a new multiple action vasodilatory beta-blocker, in congestive heart failure. J. Cardiovasc. Pharmacol. 18, S12-16.   DOI
28 Feuerstein, G. Z., Bril, A. and Ruffolo, R. R. Jr. (1997) Protective effects of carvedilol in the myocardium. Am. J. Cardiol. 80, 41L-45L.   DOI
29 Hagmeyer, K. O. and Stein, J. (2001) Hepatotoxicity associated with carvedilol. Ann. Pharmacother. 35, 1364-1366.   DOI
30 Hampton, J. R. (1996) Beta-blockers in heart failure--the evidence from clinical trials. Eur. Heart J. 17, 17-20.   DOI   ScienceOn
31 Han, C. Y., Cho, K.B., Choi, H. S., Han, H. K. and Kang, K. W. (2008) Role of FoxO1 activation in MDR1 expression in adriamycin-resistant breast cancer cells. Carcinogenesis 29, 1837-1844.   DOI