DOI QR코드

DOI QR Code

Effects of Glipizide on the Pharmacokinetics of Carvedilol after Oral and Intravenous Administration in Rats

  • Received : 2010.12.24
  • Accepted : 2011.01.20
  • Published : 2011.04.30

Abstract

This study was designed to investigate the effects of glipizide on the pharmacokinetics of carvedilol after oral or intravenous administration of carvedilol in rats. Clinically carvedilol and glipizide can be prescribed for treatment of cardiovascular diseases as the complications of diabetes, and then, Carvedilol and glipizide are all substrates of CYP2C9 enzymes. Carvedilol was administered orally or intravenously without or with oral administration of glipizide to rats. The effects of glipizide on cytochrome P450(CYP) 2C9 activity and P-gp activity were also evaluated. Glipizide inhibited CYP2C9 activity in a concentration-dependent manner with 50% inhibition concentration ($IC_{50}$) of 18 ${\mu}M$. Compared with the control group, the area under the plasma concentration-time curve (AUC) was significantly increased by 33.0%, and the peak concentration ($C_{max}$) was significantly increased by 50.0% in the presence of glipizide after oral administration of carvedilol. Consequently, the relative bioavailability (R.B.) of carvedilol was increased by 1.13- to 1.33-fold and the absolute bioavailability (A.B.) of carvedilol in the presence of glipizide was increased by 36.8%. After intravenous administration, compared to the control, glipizide could not significantly change the pharmacokinetic parameters of carvedilol. Therefore, the enhanced oral bioavailability of carvedilol may mainly result from inhibition of CYP2C9-mediated metabolism rather than both P-gp-mediated effl ux in the intestinal or in the liver and renal elimination of carvedilol by glipizide.

Keywords

References

  1. Arauz-Pacheco, C., Ramirez, L. C., Rios, J. M. and Raskin, P. (1990) Hypoglycemia induced by angiotensin-converting enzyme inhibitors in patients with non-insulin dependent diabetes recieving sulfonylurea therapy. Am. J. Med. 89, 811-813. https://doi.org/10.1016/0002-9343(90)90227-5
  2. Bart, J., Dijkers, E. C. Wegman, T. D., de Vries, E. G., van der Graaf, W. T., Groen, H. J., Vaalburg, W., Willemsen, A. T. and Hendrikse, N. H. (2005) New positron emission tomography tracer [(11)C] carvedilol reveals P-glycoprotein modulation kinetics. Br. J. Pharmacol. 145, 1045-1051 https://doi.org/10.1038/sj.bjp.0706283
  3. Bristow, M. R., Gilbert, E. M., Abraham, W. T., Adams, K. F., Fowler, M. B., Hershberger, R. E., Kubo, S. H., Narahara, K. A., Ingersoll, H., Krueger, S., Young, S. and Shusterman, N. (1996) Carvedilol produces dose-related improvements in left ventricular function and survival in subjects with chronic heart failure. MOCHA Investigators. Circulation. 94, 2807-2816. https://doi.org/10.1161/01.CIR.94.11.2807
  4. Bristow, M. R., Larrabee, P., Minobe, W., Roden, R., Skerl, L., Klein, J., Handwerger, D., Port, J. D. and Müller-Beckmann, B. (1992) Receptor pharmacology of carvedilol in the human heart. J. Cardiovasc. Pharmacol. 19, S68-80. https://doi.org/10.1097/00005344-199219001-00014
  5. Cao, X., Gibbs, S. T., Fang, L., Miller, H. A., Landowski, C. P., Shin, H. C., Lennernas, H., Zhong, Y., Amidon, G. L., Yu, L. X. and Sun, D. (2006) Why is it challenging to predict intestinal drug absorption and oral bioavailability in human using rat model. Pharm. Res. 23, 1675-1686. https://doi.org/10.1007/s11095-006-9041-2
  6. Choi, J. S. and Choi, D. H. (2010) Pharmacokinetic drug interaction between carvedilol and ticlopidine in rats. Bio. Ther. 18, 343-349. https://doi.org/10.4062/biomolther.2010.18.3.343
  7. Cleland, J. G., Bristow, M. R., Erdmann, E., Remme, W. J., Swedberg, K. and Waagstein, F. (1996) Beta-blocking agents in heart failure. Should they be used and how? Eur. Heart J. 17, 1629-1639. https://doi.org/10.1093/oxfordjournals.eurheartj.a014745
  8. Connacher, A. A., el Debani, A. H., Isles, T. E. and Stevenson, I. H. (1987) Disposition and hypoglycaemic action of glipizide in diabetic patients given a single dose of nifedipine. Eur. J. Clin. Pharmacol. 33, 81-83. https://doi.org/10.1007/BF00610385
  9. Cournot, A., Lim, C., Duchier, J. and Safar, M. (1992) Hemodynamic effects of carvedilol after acute oral administration in hypertensive and normal subjects. J. Cardiovasc. Pharmacol. 19, S35-39.
  10. Crespi, C. L., Miller, V. P. and Penman, B. W. (1997) Microtiter plate assays for inhibition of human, drug-metabolizing cytochromes P450. Anal. Biochem. 248, 188-190. https://doi.org/10.1006/abio.1997.2145
  11. DasGupta, P., Broadhurst, P. and Lahiri, A. (1991)The effects of intravenous carvedilol, a new multiple action vasodilatory beta-blocker, in congestive heart failure. J. Cardiovasc. Pharmacol. 18, S12-16. https://doi.org/10.1097/00005344-199106183-00007
  12. Feuerstein, G. Z., Bril, A. and Ruffolo, R. R. Jr. (1997) Protective effects of carvedilol in the myocardium. Am. J. Cardiol. 80, 41L-45L. https://doi.org/10.1016/S0002-9149(97)00847-3
  13. Hagmeyer, K. O. and Stein, J. (2001) Hepatotoxicity associated with carvedilol. Ann. Pharmacother. 35, 1364-1366. https://doi.org/10.1345/aph.10239
  14. Hampton, J. R. (1996) Beta-blockers in heart failure--the evidence from clinical trials. Eur. Heart J. 17, 17-20. https://doi.org/10.1093/eurheartj/17.suppl_B.17
  15. Han, C. Y., Cho, K.B., Choi, H. S., Han, H. K. and Kang, K. W. (2008) Role of FoxO1 activation in MDR1 expression in adriamycin-resistant breast cancer cells. Carcinogenesis 29, 1837-1844. https://doi.org/10.1093/carcin/bgn092
  16. Kaminsky, L. S. and Fasco, M. J. (1991) Small intestinal cytochromes P450. Crit. Rev. Toxicol. 21, 407-422.
  17. Kivisto, K. T. and Neuvonen, P. J. (1991) Enhancement of absortion and effect of glipizide by magnesium hydroxide. Clin. Pharmacol. Ther. 49, 39-43. https://doi.org/10.1038/clpt.1991.7
  18. Kolars, J. C., Schmiedlin-Ren, P., Schuetz, J. D., Fang, C. and Watkins, P. B. (1992) Identifi cation of rifampin-inducible P450IIIA4 (CYP2C9) in human small bowel enterocytes. J. Clin. Invest. 90, 1871-1878. https://doi.org/10.1172/JCI116064
  19. Kradjan, W. A., Takeuchi, K. Y., Opheim, K. E. and Wood, F. C. Jr. (1995) Pharmacokinetics and pharmacodynamics of glipizide after once-daily and divided doses. Pharmacotherapy 15, 465-471.
  20. Kradjan, W. A., Witt, D. M., Opheim, K. E. and Wood, F. C. Jr. (1994) Lack of interaction between glipizide and co-trimoxazole. J. Clin. Pharmacol. 34, 997-1002. https://doi.org/10.1002/j.1552-4604.1994.tb01972.x
  21. Lewis, D. F. V. (1996) Cytochrome P450. Substrate specifi city and metabolism. In Cytochromes P450. Structure, Function, and Mechanism. pp. 122-123. Taylor & Francis, Bristol.
  22. Lund-Johansen, P., Omvik, P., Nordrehaug, J. E. and White, W. (1992) Carvedilol in hypertension: effects on hemodynamics and 24-hour blood pressure. J. Cardiovasc. Pharmacol. 19, S27-34. https://doi.org/10.1097/00005344-199219001-00007
  23. McTavish, D., Campoli-Richards, D. and Sorkin, E. M. (1993) Carvedilol. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic effi cacy. Drugs 45, 232-258.
  24. Morgan, T. (1994) Clinical pharmacokinetics and pharmacodynamics of carvedilol. Clin. Pharmacokinet. 26, 335-346. https://doi.org/10.2165/00003088-199426050-00002
  25. Neugebauer, G., Akpan, W., von Mollendorff, E., Neubert, P. and Reiff, K. (1987) Pharmacokinetics and disposition of carvedilol in humans. J. Cardiovasc. Pharmacol. 11, S85-88.
  26. Neugebauer, G. and Neubert, P. (1991) Metabolism of carvedilol in man. Eur. J. Drug Metab. Pharmacokinet. 16, 257-260. https://doi.org/10.1007/BF03189969
  27. Niemi, M., Backman, J. T., Neuvonen, P. J. and Kivisro, K. T. (2001) Effects of rifampin on the pharmacokinetics and pharmacodynamics of glyburide and glipizide. Clin. Pharmacol. Ther. 69, 400-406. https://doi.org/10.1067/mcp.2001.115822
  28. Oldham, H. G. and Clarke, S. E. (1997) In vitro identifi cation of the human cytochrome P450 enzymes involved in the metabolism of R(+)- and S(-)-carvedilol. Drug Metab. Dispos. 25, 970-977.
  29. Paice, B. J., Paterson, K. R., and Lawson, D. H. (1985) Undesired effects of the sulphonylurea drugs. Adverse Drug React Acute Poisoning Rev. 4, 23-36.
  30. Wahlin-Boll, E., Almer, L. O. and Melander, A. (1982) Bioavailability, pharmacokinetics and effects of glipizide in type 2 diabetics. Clin. Pharmacokinet. 7, 363-372. https://doi.org/10.2165/00003088-198207040-00006
  31. Zarghi, A., Foroutan, S. M., Shafaati, A. and Khoddam, A. (2007) Quantifi cation of carvedilol in human plasma by liquid chromatography using fl uorescence detection: application in pharmacokinetic studies. J. Pharm. Biomed. Anal. 44, 250-253. https://doi.org/10.1016/j.jpba.2007.01.026

Cited by

  1. Inhibitory Effect of Citalopram on the Pharmacokinetics of Carvedilol in Rats and in vitro Models 2017, https://doi.org/10.1159/000480090